Answer:
[Cr(NH3)6.]C13
Explanation:
Alfred Werner's coordination theory (1893) recognized two kinds of valency;
Primary valency which are nondirectional and secondary valency which are directional.
Hence, the number of counter ions precipitated from a complex depends on the primary valency of the central metal ion in the complex.
We must note that it is only these counter ions that occur outside the coordination sphere that can be precipitated by AgNO3.
If we consider the options carefully, only [Cr(NH3)6.]C13 possess counter ions outside the coordination sphere which can be precipitated when treated with aqueous AgNO3.
Volume= mass divided by density
V= m/d
55/3.23
= 17.03
The anwser is atoms are destroyed
Answer:
B. More reactant is added.
Explanation:
The question basically asks at which condition would the forward reaction be favoured.
The law of equilibrium states when a system at equilibrium is disturbed by, it would annul that change. In order to increase the forward reaction, more of the reactant should be added. In order to annul this change, the system would have to favour the reaction that deals with reducing the amount of reactant added.
The correct option is;
B. More reactant is added.