Answer:
a) Li2CO3
b) NaCLO4
c) Ba(OH)2
d) (NH4)2CO3
e) H2SO4
f) Ca(CH3COO)2
g) Mg3(PO4)2
f) Na2SO3
Explanation:
a) 2Li + CO3 ↔ Li2CO3
b) NaOH * HCLO4 ↔ NaCLO4 + H2O
c) Ba + 2H2O ↔ Ba(OH)2 +
d) 2NH4 + H2CO3 ↔ (NH4)2CO3 + H2O
c) SO2 + NO2 +H2O ↔ H2SO4 + NOx
f) 2CH3COOH + CaO ↔ Ca(CH3COOH)2 + H2O
g) 3MgO + 2H3PO4 ↔ Mg3(PO4)2 + H2O
h) NaOH + H2SO3 ↔ Na2SO3 + H2O
We are told that KOH is being used to completely neutral H₂SO₄ according to the following reaction:
KOH + H₂SO₄ → H₂O + KHSO₄
If KOH can completely neutralize H₂SO₄, then there must be an equal amount of moles of each as they are in a 1:1 ratio:
0.025 L x 0.150 mol/L = .00375 mol KOH
0.00375 mol KOH x 1 mole H₂SO₄/1 mole KOH = 0.00375 mol H₂SO₄
We are told we have 15 mL of H₂SO₄ initially, so now we can find the original concentration:
0.00375 mol / 0.015 L = 0.25 mol/L
The concentration of H₂SO₄ being neutralized is 0.25 M.
Answer:
secrete cytotoxic substance which triggers apoptosis of target cell.
Explanation:
Cytotoxic T cells have cell surface receptor which recognizes the antigen present on the receptor of target cell. This interaction initiates the process of killing of target cell.
After interaction cytotoxic t cell release cytotoxic substance called granzyme and perforin. Granzyme triggers apoptosis through the activation of caspases or by making the release of cytochrome c and activation of the apoptosome.
Perforin make pores in the cell and its action is similar to complement membrane attack complex. Therefore cytotoxic substances are released by Tc cells which trigger apoptosis of target cell.
Chlorine is a halogen and all halogens and oxygen, nitrogen and hydrogen are diatomics