Answer:
Option 2 and 4 are correct
Explanation:
The reactants in the attached image have more enthalpy and hence less stability as they are more reactive. Thus, Product is more stable than the reactants.
This is an addition reaction in which two reactants add up to form the product.
Very less activation energy is required as the reactants themselves are unstable, possess high energy and hence are very reactive.
Reactants have more energy than the products.
The mass percent lithium hydroxide in the mixture with potassium hydroxide, calculated from the equivalence point in the titration of HCl with the mixture, is 19.0%.
The mass percent of lithium hydroxide can be calculated with the following equation:
(1)
Where:
(2)
We need to find the mass of LiOH.
From the titration, we can find the number of moles of the mixture since the number of moles of the acid is equal to the number of moles of the bases at the equivalence point.



Since mol = m/M, where M: is the molar mass and m is the mass, we have:
(3)
Solving equation (2) for m_{KOH} and entering into equation (3), we can find the mass of LiOH:
Solving for
, we have:

Hence, the percent lithium hydroxide is (eq 1):
Therefore, the mass percent lithium hydroxide in the mixture is 19.0%.
Learn more about mass percent here:
I hope it helps you!
Answer:
C. Lithium is most easily oxidized of the metals listed on the activity series and therefore it will most easily give electrons to metal cations
Explanation:
"Lithium" is a type of alkali metal that has a "single valence electron." Since it is a reactive element, it easily gives up an electron when it is combined with other elements. Such giving up of electron is meant to create compounds or bonds.
Among the common metals listed, "lithium" is the most easily oxidized. This means that it donates its electrons immediately. Such combination makes it exist as a<em> "cation"</em> or <em>"positively-charged."</em>
So, this explains the answer.
Answer:
B. chemical
Explanation:
Chemical change cannot go back to its original form
Answer:
P₂ = 299.11 KPa
Explanation:
Given data:
Initial volume = 600 mL
Initial pressure = 70.00 KPa
Initial temperature = 20 °C (20 +273 = 293 K)
Final temperature = 40°C (40+273 = 313 K)
Final volume = 150.0 mL
Final pressure = ?
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
P₂ = P₁V₁ T₂/ T₁ V₂
P₂ = 70 KPa × 600 mL × 313 K / 293K ×150 mL
P₂ = 13146000 KPa .mL. K /43950 K.mL
P₂ = 299.11 KPa