C. coil suspended by bearings.
<span>but im not 100% sure</span>
Answer:


Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
= Mass of sphere = 2000 kg
= Mass of other sphere = 2.1 kg
r = Distance between spheres
Force of gravity is given by

The gravitational force is 

The gravitational force is 
A compound optical microscope or just a optical microscope is a microscope that uses light and has more than one lens.
Answer:
the weight of the object decreases when it is taken from the Earth to the Moon
Explanation:
The weight of an object is defined as the product of the mass of the object with the acceleration due to gravity of the Planet.

where,
W = weight of the object
m = mass of the object
g = acceleration due to gravity on the planet
The mass of an object remains constant everywhere in the universe. Therefore, the weight is directly proportional to the value of acceleration due to gravity.
The value of acceleration due to gravity on the Moon is lesser than its value on the Earth.
<u>Hence, the weight of the object decreases when it is taken from the Earth to the Moon </u>