Answer:
200
Explanation:
A size sheets (also known as letter size) are 8.5 inches by 11 inches.
B size sheets (also known as ledger size) are 11 inches by 17 inches.
One B size sheet is twice as large as a A size sheet. So if you have 100 B size sheets and cut each one in half, you'll get 200 A size sheets.
Answer:
23.3808 kW
20.7088 kW
Explanation:
ρ = Density of oil = 800 kg/m³
P₁ = Initial Pressure = 0.6 bar
P₂ = Final Pressure = 1.4 bar
Q = Volumetric flow rate = 0.2 m³/s
A₁ = Area of inlet = 0.06 m²
A₂ = Area of outlet = 0.03 m²
Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s
Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s
Height between inlet and outlet = z₂ - z₁ = 3m
Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

Work done by pump

∴ Power input to the pump 23.3808 kW
Now neglecting kinetic energy

Work done by pump

∴ Power input to the pump 20.7088 kW
Answer: The energy system related to your question is missing attached below is the energy system.
answer:
a) Work done = Net heat transfer
Q1 - Q2 + Q + W = 0
b) rate of work input ( W ) = 6.88 kW
Explanation:
Assuming CPair = 1.005 KJ/Kg/K
<u>Write the First law balance around the system and rate of work input to the system</u>
First law balance ( thermodynamics ) :
Work done = Net heat transfer
Q1 - Q2 + Q + W = 0 ---- ( 1 )
rate of work input into the system
W = Q2 - Q1 - Q -------- ( 2 )
where : Q2 = mCp T = 1.65 * 1.005 * 293 = 485.86 Kw
Q2 = mCp T = 1.65 * 1.005 * 308 = 510.74 Kw
Q = 18 Kw
Insert values into equation 2 above
W = 6.88 Kw
Answer:
19063.6051 g
Explanation:
Pressure = Atmospheric pressure + Gauge Pressure
Atmospheric pressure = 97 kPa
Gauge pressure = 500 kPa
Total pressure = 500 + 97 kPa = 597 kPa
Also, P (kPa) = 1/101.325 P(atm)
Pressure = 5.89193 atm
Volume = 2.5 m³ = 2500 L ( As m³ = 1000 L)
Temperature = 28 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28.2 + 273.15) K = 301.15 K
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
5.89193 atm × 2500 L = n × 0.0821 L.atm/K.mol × 301.15 K
⇒n = 595.76 moles
Molar mass of oxygen gas = 31.9988 g/mol
Mass = Moles * Molar mass = 595.76 * 31.9988 g = 19063.6051 g
Answer:
non-functional requirement,
Yes they can.
The application loading time is determined by testing system under various scenarios
Explanation:
non-functional requirement are requirements needed to justify application behavior.
functional requirements are requirements needed to justify what the application will do.
The loading time can be stated with some accuracy level after testing the system.