Greetings!
The correct answer choice is Choice 4.
<em>Why?</em>
In a scientific experiment the only thing being changed is the independent variable. Everything else should stay the same.
In this experiment, the independent variable is the amount of sunlight each plant should receive. <em>Here's a tip</em>- when looking for and independent variable look for whats being changed on purpose.
Hope this helps!
~Fluerie
Answer: 117.6N
Explanation:
By the second Newton's law, we know that:
F = m*a
F = force
m = mass
a = acceleration
We know that in the surface of the Earth, the gravitational acceleration is g = 9.8m/s^2.
Then we just can input that acceleration in the above equation, and also replace m by 12kg, and find that the force due the gravity is:
F = 12kg*9.8m/s^2 = 117.6N
Answer:
The resultant velocity is 86.1 mi/h.
Explanation:
The law of cosines is given by:

Where:
c: is the resultant velocity =?
a: is the velocity of the plane = 75.0 mi/h
b: is the velocity of the wind = 15.0 mi/h
θ: is the angle between "a" and "b"
The angle between "a" and "b" can be found as follows:
Now, by using the law of cosines we have:

Therefore, the resultant velocity is 86.1 mi/h.
The law of sines is:

Where:
γ: is the angle between "b" and "c"
α: is the angle between "a" and "c"
So, if we want to find "c" by using the law of sines, we need to know another angle besides θ (γ or α), and the statement does not give us.
I hope it helps you!
<h3><u>Volume is 0.1848 m³</u></h3><h3 />
Explanation:
<h2>Given:</h2>
m = 49.9 kg
ρ = 270 kg/m³
<h2>Required:</h2>
volume
<h2>Equation:</h2>

where: ρ - density
m - mass
v - volume
<h2>Solution:</h2>
Substitute the value of ρ and m





<h2>Final Answer:</h2><h3><u>Volume is 0.1848 m³</u></h3>
Answer: 6.12 kg
Explanation:
Since Mass of ball = ? (let the unknown value be Z)
Acceleration due to gravity, g= 9.8m/s^2
Height, h = 1.5 metres
Gravitational potential energy GPE = 90J
Gravitational potential energy depends on the weight of the ball, the action of gravity and height.
Thus, GPE = Mass m x Acceleration due to gravity g x Height h
90J = Z x 9.8m/s^2 x 1.5m
90 = Z x 14.7
Z = 90/14.7
Z = 6.12 kg
Thus, the bowling ball weigh 6.12 kilograms