Answer:
a) 3673469.39 seconds
b) 6.61×10¹⁴ m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0.12×3×10⁸ m/s
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²
Equation of motion

Time taken to reach 12% of light speed is 3673469.39 seconds

The distance it would have to travel is 6.61×10¹⁴ m
<h2>Question:</h2>
In this circuit the resistance R1 is 3Ω, R2 is 7Ω, and R3 is 7Ω. If this combination of resistors were to be replaced by a single resistor with an equivalent resistance, what should that resistance be?
Answer:
9.1Ω
Explanation:
The circuit diagram has been attached to this response.
(i) From the diagram, resistors R1 and R2 are connected in parallel to each other. The reciprocal of their equivalent resistance, say Rₓ, is the sum of the reciprocals of the resistances of each of them. i.e

=>
------------(i)
From the question;
R1 = 3Ω,
R2 = 7Ω
Substitute these values into equation (i) as follows;


Ω
(ii) Now, since we have found the equivalent resistance (Rₓ) of R1 and R2, this resistance (Rₓ) is in series with the third resistor. i.e Rₓ and R3 are connected in series. This is shown in the second image attached to this response.
Because these resistors are connected in series, they can be replaced by a single resistor with an equivalent resistance R. Where R is the sum of the resistances of the two resistors: Rₓ and R3. i.e
R = Rₓ + R3
Rₓ = 2.1Ω
R3 = 7Ω
=> R = 2.1Ω + 7Ω = 9.1Ω
Therefore, the combination of the resistors R1, R2 and R3 can be replaced with a single resistor with an equivalent resistance of 9.1Ω
Density
is a value for mass, such as kg, divided by a value for volume, such as m3.
Density is a physical property of a substance that represents the mass of that
substance per unit volume. It is a property that can be used to describe a
substance.<span> </span><span>It has standard units of
kg/m^3 or g/mL.
So, the best answer is option C.</span>
Answer:
a) 3.37 x 
b) 6.42kg/
Explanation:
a) Firstly we would calculate the volume of the metal using it`s weight in air and water , after finding the weight we would find the density .
Weight of metal in air = 50N = mg implies the mass of metal is 5kg.
Now the difference of weight of the metal in air and water = upthrust acting on it = volume (metal) p (liquid) g = V (1000)(10) = 14N. So volume of metal piece = 14 x
. So density of metal = mass of metal / volume of metal = 5 / 14 x
= 3.37 x 
b) Water exerts a buoyant force to the metal which is 50−36 = 14N, which equals the weight of water displaced. The mass of water displaced is 14/10 = 1.4kg Since the density of water is 1kg/L, the volume displaced is 1.4L. Hence, we end up with 3.57kg/l. Moreover, the unknown liquid exerts a buoyant force of 9N. So the density of this liquid is 6.42kg/