1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sineoko [7]
3 years ago
15

The photeselestric effect is observed when light of a sufficiently high frequency is focused onto a polished metal surface, emit

ting photo electrons with a kinetic energy that is given by the difference betweent he photon enerzy and the work function of the metal Historically, this effect was very confusing. For most wave phenon tand ight was wel known to behave as a wave phenomenon·ore nerease the increasing the amplitude of the wave. in the case of light, this means increase- there are simple more electrons emitted increasing the ententisty. However, with increased intensity, the kinetic energy of the photoelections emited does not Albert Einstein (1879-1955) offered a solution to this perplecing problem in hi 190s paper!,-Ober einen die Erzeugung und Verwandlung des Lichtes betrefflenden heuristischen Gesichtspunkr. Einstein proposed the following relationship: kinetic- hw-E work function energy of an emitted photoelectron, hw is the energy of a photon of frequency v and Ework function is the wrok function for the metal used in the ion is the energy required to remove an electron from the surface of the metal experiment. The work functi References Einstein, Albert (1905). The work function of cesium is 2.1 ev. What is this energy in? Hint: 1 ev-1,602 x 10-19) Annalen der Physik 17(6 132-148 (1905) 34x 1019) 21x 1019 64x 1019 43x 1019 19, 0 19, 0
Physics
1 answer:
Helga [31]3 years ago
8 0

Answer:

3.4\cdot 10^{-19} J

Explanation:

In order to convert the work function of cesium from electronvolts to Joules, we must use the following conversion factor:

1 eV = 1.6 \cdot 10^{-19} J

In our problem, the work function of cesium is

E=2.1 eV

so, we can convert it into Joules by using the following proportion:

1 eV : 1.6\cdot 10^{-19} J = 2.1 eV : x\\x=\frac{(1.6\cdot 10^{-19} J)(2.1 eV)}{1 eV}=3.4\cdot 10^{-19} J

You might be interested in
(I think it's D but idontknow)
sukhopar [10]

During an exothermic reaction; light and heat are released into the environment.

An exothermic reaction is one in which heat is released to the environment. This heat can be physically observed sometimes like in an a combustion reaction.

In an exothermic reaction, the enthalpy of the reactants is greater than the enthalpy of the products.

This heat lost is sometimes felt as the hotness of the vessel in which the reaction has taken place.

In conclusion, light and heat are released into the environment in an exothermic reaction.

Learn more: brainly.com/question/4345448

3 0
2 years ago
A force of 100 newtons is used to move an object a distance of 15 meters with a power of 25 watts. Find the
valentina_108 [34]


work is distance * force so 15*100=1500

and to find time you know power = diastance * force / time

so 25=15*100/t

25=1500/t

25/1500=t

.016=time


5 0
3 years ago
A source charge generates an electric field of 4286 N/C at a distance of 2. 5 m. What is the magnitude of the source charge? (Us
svp [43]

The magnitude of the source charge is 3 μC which generates 4286 N/C of the electric field. Option B is correct.

What does Gauss Law state?

It states that the electric flux across any closed surface is directly proportional to the net electric charge enclosed by the surface.

Q = \dfrac {ER^2}k

Where,

E = electric force = 4286 N/C

k = Coulomb constant = 8.99 \times  10^9 \rm\ N m ^2 /C ^2

Q\\
     = charges = ?

r = distance of separation = 2.5 m

Put the values in the formula,

Q  = \dfrac {4286\times  2.5 ^2}{8.99 \times  10^9 }\\\\
Q  = 3\rm \  \mu C

Therefore, the magnitude of the source charge is 3 μC.

Learn more about Gauss's law:

brainly.com/question/1249602

8 0
2 years ago
Two electric charges A and B were placed facing each other at a distance of separation "r". The common electrostatic force betwe
lutik1710 [3]

Answer:

From the formula of force:

F =  \frac{kAB}{ {r}^{2} }  \\

since AB and k are constants:

F \:  \alpha  \:  \frac{1}{ {r}^{2} }  \\  \\ F =  \frac{x}{ {r}^{2} }

x is a constant of proportionality

• when force is 4N, separation distance is 1

4 =  \frac{x}{1}  \\ x = 4

therefore, equation becomes

F =  \frac{4}{ {r}^{2} }  \\

when r is doubled, r becomes 2. find F:

F =  \frac{4}{ {2}^{2} }  \\  \\ F =  \frac{4}{4}  \\  \\ { \underline{force \: is \: 1N}}

5 0
3 years ago
Which type of radiation travels at the speed of light and penetrates matter easily?
goblinko [34]
The radiation is ultra voilet or Gamma radiation , because their wave length is very short i e 1..0 to 2.5 (angstrom)Ao.
7 0
4 years ago
Read 2 more answers
Other questions:
  • How you can speed up the dissolving process when preparing juice from frozen concentrate
    7·1 answer
  • 8. A person with a mass of 15 kg is walking on a flat surface at a velocity of 5 m/s. What is the walker's momentum?
    5·1 answer
  • Mutations are avoided during replication because DNA polymerase is able to _____?
    13·2 answers
  • two equal and unlike parallel forces of magnitude 34N act on a rigid body,such that the moment of couple is 8.50 Nm. calculate t
    12·1 answer
  • Sound waves, water waves, and light waves are all alike in that they all
    13·1 answer
  • If a force of 10 N acts on an object and an additional force of 6 N acts on the object in the same direction. What will be the n
    5·2 answers
  • How hot can the desert get​
    5·2 answers
  • A force of 3 newtons moves a 10 kilogram mass horizontally a distance of 3 meters. The mass does not slow down or speed up as it
    11·1 answer
  • You are in a boat that is 1400 kg. The current is 1500N and is pushing you back. If you have an acceleration of 3 m/s^2 what is
    11·1 answer
  • How long does it take for a bicycle traveling 7.0 m/s to come to a stop if the
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!