Answer:81.235N
Explanation:
Work=88J
theta=10°
distance=1.1 meters
work=force x cos(theta) x distance
88=force x cos10 x 1.1 cos10=0.9848
88=force x 0.9848 x 1.1
88=force x 1.08328
Divide both sides by 1.08328
88/1.08328=(force x 1.08328)/1.08328
81.235=force
Force=81.235
Answer:
Science and technology have had a major impact on society, and their impact is growing. By drastically changing our means of communication, the way we work, our housing, clothes, even the length, and quality of life itself, science has generated changes in the moral values and basic philosophies of mankind.
Explanation:
The work done by the centripetal force during om complete revolution is 401.92 J.
<h3>What is centripetal force?</h3>
Centripetal force is a force that acts on a body undergoing a circular motion and is directed towards the center of the circle in which the body is moving.
To Calculate the work done by the centripetal force during one complete revolution, we use the formula below.
Formula:
- W = (mv²/r)2πr
- W = 2πmv²................... Equation 1
Where:
- W = Work done by the centripetal force
- m = mass of the ball
- v = velocity of the ball
- π = pie
From the question,
Given:
- m = 16 kg
- v = 2 m/s
- π = 3.14
Substitute these values into equation 1
Hence, The work done by the centripetal force during om complete revolution is 401.92 J.
Learn more about centripetal force here: brainly.com/question/20905151
Answer:
The pressure drop predicted by Bernoulli's equation for a wind speed of 5 m/s
= 16.125 Pa
Explanation:
The Bernoulli's equation is essentially a law of conservation of energy.
It describes the change in pressure in relation to the changes in kinetic (velocity changes) and potential (elevation changes) energies.
For this question, we assume that the elevation changes are negligible; so, the Bernoulli's equation is reduced to a pressure change term and a change in kinetic energy term.
We also assume that the initial velocity of wind is 0 m/s.
This calculation is presented in the attached images to this solution.
Using the initial conditions of 0.645 Pa pressure drop and a wind speed of 1 m/s, we first calculate the density of our fluid; air.
The density is obtained to be 1.29 kg/m³.
Then, the second part of the question requires us to calculate the pressure drop for a wind speed of 5 m/s.
We then use the same formula, plugging in all the parameters, to calculate the pressure drop to be 16.125 Pa.
Hope this Helps!!!