Thhhhhhhhhhhhhhhhhhhhhhhhheeeeeeeeeeeeeeee answer is 1.56
Answer:
2.32 s
Explanation:
Using the equation of motion,
s = ut+g't²/2............................ Equation 1
Where s = distance, u = initial velocity, g' = acceleration due to gravity of the moon, t = time.
Note: Since Onur drops the basket ball from a height, u = 0 m/s
Then,
s = g't²/2
make t the subject of the equation,
t = √(2s/g')...................... Equation 2
Given: s = 10 m, g' = 3.7 m/s²
Substitute this value into equation 2
t = √(2×10/3.7)
t = √(20/3.7)
t = √(5.405)
t = 2.32 s.
The answer would be B. This is because all planets in our galaxy orbit the sun.
consider the velocity towards the pitcher as positive
m = mass of the baseball = 0.145 kg
v₀ = initial velocity of the baseball = - 39 m/s
v = final velocity of the baseball = 52 m/s
t = time of contact = 3 x 10⁻³ sec
F = average force between bat and ball
Using impulse-change in momentum equation
F t = m (v - v₀ )
F (3 x 10⁻³) = (0.145) (52 - (- 39))
F = 4398.33 N