Answer:
The sample size n = 4225
Step-by-step explanation:
We will use maximum error formula = ![\frac{z_{a} S.D}{\sqrt{n} }](https://tex.z-dn.net/?f=%5Cfrac%7Bz_%7Ba%7D%20S.D%7D%7B%5Csqrt%7Bn%7D%20%7D)
but we will find sample size "n"
![\sqrt{n} = \frac{z_{a} S.D}{maximum error}](https://tex.z-dn.net/?f=%5Csqrt%7Bn%7D%20%20%3D%20%5Cfrac%7Bz_%7Ba%7D%20S.D%7D%7Bmaximum%20error%7D)
Squaring on both sides , we get
![n = (\frac{z_{a} S.D}{maximum error})^2](https://tex.z-dn.net/?f=n%20%20%3D%20%28%5Cfrac%7Bz_%7Ba%7D%20S.D%7D%7Bmaximum%20error%7D%29%5E2)
Given 99% confidence interval (z value) = 2.56
given maximum error = 0.02
![n = (\frac{z_{a} p(1-p)}{maximum error})^2](https://tex.z-dn.net/?f=n%20%20%3D%20%28%5Cfrac%7Bz_%7Ba%7D%20p%281-p%29%7D%7Bmaximum%20error%7D%29%5E2)
n≤
( here S.D = p(1-p) ≤ 1/2
on simplification , we get n = 4225
<u>Conclusion</u>:
The sample size of two samples is n = 4225
<u>verification</u>:-
We will use maximum error formula =
=
= 0.0196
substitute all values and simplify we get maximum error is 0.02
Solution :
Let
and
represents the proportions of the seeds which germinate among the seeds planted in the soil containing
and
mushroom compost by weight respectively.
To test the null hypothesis
against the alternate hypothesis
.
Let
denotes the respective sample proportions and the
represents the sample size respectively.
![$\hat p_1 = \frac{74}{155} = 0.477419](https://tex.z-dn.net/?f=%24%5Chat%20p_1%20%3D%20%5Cfrac%7B74%7D%7B155%7D%20%3D%200.477419)
![n_1=155](https://tex.z-dn.net/?f=n_1%3D155)
![$p_2=\frac{86}{155}=0.554839](https://tex.z-dn.net/?f=%24p_2%3D%5Cfrac%7B86%7D%7B155%7D%3D0.554839)
![n_2=155](https://tex.z-dn.net/?f=n_2%3D155)
The test statistic can be written as :
![$z=\frac{(\hat p_1 - \hat p_2)}{\sqrt{\frac{\hat p_1 \times (1-\hat p_1)}{n_1}} + \frac{\hat p_2 \times (1-\hat p_2)}{n_2}}}](https://tex.z-dn.net/?f=%24z%3D%5Cfrac%7B%28%5Chat%20p_1%20-%20%5Chat%20p_2%29%7D%7B%5Csqrt%7B%5Cfrac%7B%5Chat%20p_1%20%5Ctimes%20%281-%5Chat%20p_1%29%7D%7Bn_1%7D%7D%20%2B%20%5Cfrac%7B%5Chat%20p_2%20%5Ctimes%20%281-%5Chat%20p_2%29%7D%7Bn_2%7D%7D%7D)
which under
follows the standard normal distribution.
We reject
at
level of significance, if the P-value
or if ![|z_{obs}|>Z_{0.025}](https://tex.z-dn.net/?f=%7Cz_%7Bobs%7D%7C%3EZ_%7B0.025%7D)
Now, the value of the test statistics = -1.368928
The critical value = ![\pm 1.959964](https://tex.z-dn.net/?f=%5Cpm%201.959964)
P-value = ![$P(|z|> z_{obs})= 2 \times P(z< -1.367928)$](https://tex.z-dn.net/?f=%24P%28%7Cz%7C%3E%20z_%7Bobs%7D%29%3D%202%20%5Ctimes%20P%28z%3C%20-1.367928%29%24)
![$=2 \times 0.085667$](https://tex.z-dn.net/?f=%24%3D2%20%5Ctimes%200.085667%24)
= 0.171335
Since the p-value > 0.05 and
, so we fail to reject
at
level of significance.
Hence we conclude that the two population proportion are not significantly different.
Conclusion :
There is not sufficient evidence to conclude that the
of the seeds that
with the percent of the
in the soil.
I agree. All real numbers except -1.
Three equivalent ratios are: 8/6, 12/9, 16/12