Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:
You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
The concentrations are:
- [PCl₃]=
- [Cl₂]=
- [PCl₅]=
Replacing:
Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>
The answer is 57.14%.
First we need to calculate molar mass of <span>NaHCO3. Molar mass is mass of 1 mole of a substance. It is the sum of relative atomic masses, which are masses of atoms of the elements.
Relative atomic mass of Na is 22.99 g
</span><span>Relative atomic mass of H is 1 g
</span><span>Relative atomic mass of C is 12.01 g
</span><span>Relative atomic mass of O is 16 g.
</span>
Molar mass of <span>NaHCO3 is:
22.99 g + 1 g + 12.01 g + 3 </span>· <span>16 g = 84 g
Now, mass of oxygen in </span><span>NaHCO3 is:
3 </span>· 16 g = 48 g
mass percent of oxygen in <span>NaHCO3:
48 g </span>÷ 84 g · 100% = 57.14%
Therefore, <span>the mass percent of oxygen in sodium bicarbonate is 57.14%.</span>
A fan pulls in air from the surrounding area, which typically has high moisture levels.
When the air passed through the dehumidifier , it touches the cooling coils , which in turn pull moisture from the air by lowering temperature.