Answer:
What do you need help with
Explanation:
<em>what</em><em> </em><em>are</em><em> </em><em>the</em><em> </em><em>terms</em><em> </em><em>that</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>be</em><em> </em><em>defined</em><em> </em><em>?</em>
Answer:
0.0003 moles
Explanation:
MgC6H8O6 = (60.0mg/1)(1 mol mg/176000mg)
Answer:
0.147 billion years = 147.35 million years.
Explanation:
- It is known that the decay of a radioactive isotope isotope obeys first order kinetics.
- Half-life time is the time needed for the reactants to be in its half concentration.
- If reactant has initial concentration [A₀], after half-life time its concentration will be ([A₀]/2).
- Also, it is clear that in first order decay the half-life time is independent of the initial concentration.
- The half-life of Potassium-40 is 1.25 billion years.
- For, first order reactions:
<em>k = ln(2)/(t1/2) = 0.693/(t1/2).</em>
Where, k is the rate constant of the reaction.
t1/2 is the half-life of the reaction.
∴ k =0.693/(t1/2) = 0.693/(1.25 billion years) = 0.8 billion year⁻¹.
- Also, we have the integral law of first order reaction:
<em>kt = ln([A₀]/[A]),</em>
<em></em>
where, k is the rate constant of the reaction (k = 0.8 billion year⁻¹).
t is the time of the reaction (t = ??? year).
[A₀] is the initial concentration of (Potassium-40) ([A₀] = 100%).
[A] is the remaining concentration of (Potassium-40) ([A] = 88.88%).
- At the time needed to be determined:
<em>8 times as many potassium-40 atoms as argon-40 atoms. Assume the argon-40 only comes from radioactive decay.</em>
- If we start with 100% Potassium-40:
∴ The remaining concentration of Potassium-40 ([A] = 88.88%).
and that of argon-40 produced from potassium-40 decayed = 11.11%.
- That the ratio of (remaining Potassium-40) to (argon-40 produced from potassium-40 decayed) is (8: 1).
∴ t = (1/k) ln([A₀]/[A]) = (1/0.8 billion year⁻¹) ln(100%/88.88%) = 0.147 billion years = 147.35 million years.
<u>Answer:</u> The balanced chemical equation for the decomposition of nitroglycerin is written below.
<u>Explanation:</u>
Decomposition reaction is defined as the reaction in which a single large substance breaks down into two or more smaller substances.
Every balanced chemical equation follows law of conservation of mass.
A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on product side.
The balanced chemical equation for the decomposition of nitroglycerin follows:

By Stoichiometry of the reaction:
1 mole of liquid nitroglycerin decomposes into 12 moles of carbon dioxide gas, 10 moles of gaseous water, 6 moles of dinitrogen gas and 1 mole of dioxygen gas.
Hence, the balanced chemical equation for the decomposition of nitroglycerin is written above.