Answer:
D. Nuclei with small masses combine to form nuclei with larger masses.
B. A small amount of mass in the nuclei that combine is converted to energy
Explanation:
A nuclear fusion, in contrary to fission, is the process by which the nuclei of two atoms combine to form a much larger atom with a large nuclei. Likewise, during a fusion reaction, a large amount of energy is released from the small amount of mass in the nuclei (two) that combines.
According to this question, the following are true of a fusion reaction:
- Nuclei with small masses combine to form nuclei with larger masses.
- A small amount of mass in the nuclei that combine is converted to enormous energy.
The energy required to break existing chemical bonds in reactants is called the activation energy.
<h3>What is activation energy?</h3>
Activation energy in chemistry is the energy required to initiate a chemical reaction.
Chemical reactions involve the breaking of chemical bonds in substances called reactants to form new substances called products.
The energy required to break the bond in the existing reactants thus elevating these substances to a state of high activation is known as activation energy.
Therefore, it can be said that energy required to break existing chemical bonds in reactants is called the activation energy.
Learn more about activation energy at: brainly.com/question/11334504
#SPJ1
If in the solution, half of the added solute fails to dissolve. The solution started out supersaturated. The correct option is b.
<h3>What is supersaturation?</h3>
Supersaturation is the condition where the solutes exceed the amount that can be dissolved in a solution.
Supersaturation occurs when the solute no longer mix in the solution.
Thus, the correct option is b. The solution started out supersaturated.
Learn more about supersaturation
brainly.com/question/16817894
#SPJ1