Answer:
Population of duck and frog will change with the change
Explanation:
The complete question is
Scientists are studying animals in a large lake area. In this lake area, both owls and raccoons eat ducks, and ducks eat frogs. The data shows that recently the size of the raccoon population decreased. How will the decrease in the raccoon population affect the other populations? Be sure to explain whether the owl population, the duck population, and the frog population will change, and why.
- Owl population will change
-
Duck population will change
-
Frog population will change
Solution
Raccoon eat duck and duck eat frog. Now if the population of Raccoon decreases then the number of predators of duck will decrease thereby increasing the population of duck.
The higher will be the number of ducks, the more frogs they will consume thereby decreasing the population of frogs
Hence both the population of duck and frog will change with the change
The way you want to find the percent composition would be by breaking down the problem like so:
K= atomic mass of K which is 39.098
Mn = atomic mass of Mn which is 54.938
O= atomic mass of o which is 15.999
Then you want to add 39.098+ 54.938+ 15.999 and you get 110.035 which is the molar mass for KMnO
Then you want to take each molar mass and then divide it 110.035 and multiply by 100
Ex. K = 39.098/ 110.035 and the multiply what you get by a 100
You do this for the other elements as well good luck!
Answer:
Sand may be deposited as sediments that become sedimentary rocks after hardening, or lithifying. Extreme burial pressure, rising temperature at depth, and a lot of time, will transform just about any rock to become a metamorphic rock.
Explanation:
Answer:
When ΔS > ΔH/ T, then the reaction will proceed forward
Explanation:
- The entity that determines the whether a reaction will occur on its own in the forward direction (Spontaneity or Feasibility) is Gibb's free energy.
- Gibb's free energy is the energy available to do work. It is denoted as 'G'. It cannot be easily measured. The change (ΔG) can only be measured. ΔG = ΔH - TΔS
when ΔG is positive, The reaction is not spontaneous (reaction will not occur on its own)
When ΔG is negative, The reaction is spontaneous (reaction will occur on its own)
When ΔG is zero, the reaction is in equilibrium
Option A and E are not correct. ΔH (Enthalpy) cannot determine spontaneity
Option C and D cannot alone determine spontaneity of reaction
For reaction to be spontaneous, TΔS > ΔH
Therefore, ΔS > ΔH/T