I assume what you're asking about is, how does the temperature changes when we increase water's mass, according the formula for heat ?
Well the formula is :

(where Q is heat, m is mass, c is specific heat and

is change in temperature. So according this formula, increasing mass will increase the substance's heat, but won't effect it's temperature since they are not related. Unless, if you want to keep the substance's heat constant, in that case when you increase it's mass you will have to decrease the temperature
Answer:
Covalent Bonds are formed when two non-metals share electrons
Hope this helps
A combustion reaction is a reaction that reacts in the presence of oxygen molecules. Methane will release -3115 kJ/mol of heat.
<h3>What is a combustion reaction?</h3>
A combustion reaction includes the reaction between the chemical reactant and oxygen molecule to produce the product. The combustion reaction between methane and oxygen is given as:
CH₄(g) + 2O₂ (g) → CO₂(g) + 2H₂O (l), ΔH = -890 kJ/mol
The stoichiometry coefficient from the reaction gives 1 mole of methane releases -890 kJ/mol enthalpy.
So, 3.5 moles methane will release = 3.5 × -890 = -3115 kJ/mol
Therefore, -3115 kJ/mol of heat is released.
Learn more about combustion reaction here:
brainly.com/question/27823881
#SPJ1