Answer:
A. m C5H12 = 108.23 g
B. m F2 = 547.142 g
C. m Ca(CN)2 = 71.85 g
Explanation:
- mass (m) = mol (n) × molecular weigth (Mw)
∴ Mw C5H12 = ((12.011)(5)) + ((1.008)(12)) = 72.151 g/mol C5H12
∴ Mw F2 = (18.998)(2) = 37.996 g/mol F2
∴ Mw = Ca(CN)2 = 40.078+((12.011+14.007)(2)) = 92.114 g/mol Ca(CN)2
A. m C5H12 = ( 1.50 mol)×(72.151 g/mol) = 108.23 g C5H12
B. m F2 = (14.4 mol)×(37.996 g/mol) = 547.142 g F2
C. m Ca(CN)2 = (0.780 mol)×(92.114 g/mol) = 71.85 g Ca(CN)2
The percentage of CO2 increased 48 percent. Hope this helped!
The reaction that takes place in a nuclear fission reactor is as follows: 235/92 U + 1/0n 94/36Kr + 139/56 Ba + 3/0n.
<h3>What is a nuclear fission reactor?</h3>
A nuclear fission reactor is the place where nuclear chain reactions occur that produce energy by fission.
Nuclear fission is the nuclear reaction in which a large nucleus splits into smaller ones with the simultaneous release of energy.
Therefore, the option that involves the splitting of atoms into smaller ones is as follows: 235/92 U + 1/0n 94/36Kr + 139/56 Ba + 3/0n.
Learn more about nuclear fission reactor at: brainly.com/question/10203508
#SPJ1
Answer:
299.14 K or 26°C
Explanation:
The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas.
The ideal gas law is often written as
PV = nRT
where P ,V and T are the pressure, volume and absolute temperature;
n is the number of moles of gas and R is the ideal gas constant.
n=1.10 x 10^5 mol
V= 2.70 x 10^6 L
P= 1.00 atm= 101.325 kPa
R= 8.314 kPa*L/ mol*K
when the formula is rearranged, T=PV/ nR
T = (101.325kPa * 2.70 x 10^6 L)/ (1.10 x 10^5 mol * 8.314 kPa*L/ mol*K)
T = 299.1421917 K
or
T = 299.14 - 273.15 = 25.99 = 26°C