Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.

Answer:
293k
Explanation:
In this question, we are asked to calculate the temperature to which the reaction must be heated to double the equilibrium constant.
To find this value, we will need to use the Van’t Hoff equation.
Please check attachment for complete solution
The percentage error in his experimental value is -51.97%.
<h3>What is percentage error?</h3>
This is the ratio of the error to the actual measurement, expressed in percentage.
To calculate the percentage error of the student, we use the formula below.
Formula:
- Error(%) = (calculated value-accepted value)100/(accepted............. Equation 1
From the question,
Given:
- Calculated value = 4.15 g/cm
- accepted value = 8.64 g/cm
Substitute these values into equation 1
- Error(%) = (4.15-8.64)100/8.64
- Error(%) = -4.49(100)/8.64
- Error(%) = -449/8.64
- Error(%) = -51.97 %
Hence, The percentage error in his experimental value is -51.97%.
Learn more percentage error here: brainly.com/question/5493941
Answer:
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. ... In electric circuits the charge carriers are often electrons moving through a wire.
Answer:
Explanation:
Given height of lamp from the ceiling = 2.6m
mass of the lamp = 3.8kg
acceleration due to gravity = 9.81m/s²
As the body falls to the ground, it falls under the influence of gravity.
Gravitational potential energy = mass*acc due to gravity * height
Gravitational potential energy = 3.8*2.6*9.81
Gravitational potential energy = 96.923 Joules
b) Kinetic energy = 1/2 mv²
m = mass of the body (in kg)
v = velocity of the body (in m/s²)
To get the velocity v, we will use the equation of motion 

Since mass = 3.8kg

c) To know how fast the lamp is moving when it hits the ground, we will use the formula. When the body hits the ground, the height covered will be 0m. this means that the body is not moving once it hits the ground. It stays in one position. The energy possessed by the body at this point is potential energy. The correct answer is therefore 0 m/s