In theory, yes. The 2 problems are the materials used for clinical thermometers, & the temperature capacity of the clinical thermometer. If anything, change the material & extend the measurement threshold. At that point, it wouldn´t be used for clinical garbage anymore.
Answer:
x component 3.88 y- component 14.488
Explanation:
We have given a vector A which has a magnitude of 15 m/sec which is at 75° counter-clock wise ( anti-clock wise) from x -axis which is clearly shown in bellow figure
Now x-component will be 15 cos75°=3.8822 ( as it makes an angle of 75° with x-axis )
y- component will be 15 sin 75°=14.488
For verification the resultant of x and y component should be equal to 15
So 
Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N
Answer:
This is because the force of gravity is much less on the moon than on the earth, therefore the person wont be pulled down much and will jump higher