
The correct choice is ~ A
Bikes don't require gasoline for their functioning, so it causes less air pollution.
The two substances that are mostly likely examples of covalent bonding are Sucrose and Ethanol.
<h3 /><h3 /><h3>What is a covalent Bond?</h3>
- A covalent bond is a type of chemical bond that involves the sharing of pairs of electron between atoms.
Examples of compounds with covalent bond include the following;
- Distilled water
- Sucrose
- Ethanol
Olive oil is a mixture not a compound
Sodium Chloride & Potassium lodide are examples of ionic bond.
Thus, the two substances that are mostly likely examples of covalent bonding are Sucrose and Ethanol.
Learn more about covalent bonds here: brainly.com/question/12732708
A. kinetic energy hope this helps
Answer:
The value is 
Explanation:
From the question we are told that
The magnitude of the horizontal force is 
The mass of the crate is 
The acceleration of the crate is 
Generally the net force acting on the crate is mathematically represented as

Here
is force of kinetic friction (in N) acting on the crate
So

=> 
The right hand rule to find the direction of the magnetic field for a falling bar is:
- The charge is positive the magnetic field is outgoing, horizontally and towards us.
- The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.
The magnetic force is given by the vector product of the velocity and the magnetic field.
F = q v x B
Where the bolds indicate vectors, F is the force, q the charge on the particle, v the velocity and B the magnetic field.
In the vector product, the vectors are perpendicular, which is why the right-hand rule has been established, see attached:
- The thumb points in the direction of speed.
- Fingers extended in the direction of the magnetic field.
- The palm is in the direction of the force if the charge is positive and in the opposite direction if the charge is negative.
They indicate that the bar is dropped, therefore its speed is vertical and downwards, it moves to the left therefore this is the direction of the force, we use the right hand rule, the magnetic field must be horizontal, we have two possibilities:
- If the charge is positive the magnetic field is outgoing, horizontally and towards us.
- If the charge of the bar is negative, the magnetic field is incoming, that is, horizontal away from us
In conclusion using the right hand rule we can find the direction of the magnetic field for a falling bar is:
- The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.
- The charge is positive the magnetic field is outgoing, horizontally and towards us.
Learn more about the right hand rule here: brainly.com/question/12847190