<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>G</em><em>ood</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
<em>~</em><em>p</em><em>r</em><em>a</em><em>g</em><em>y</em><em>a</em>
Answer:
First Graph (The left-most graph)
Step-by-step explanation:
Given equation :
.
Strategy 1: We can cross mutiply both sides remove fraction form.
On cross multiplication, we get
x * 7 = 3 * 42
7x = 126.
Dividing both sides by 7, we get
<h3>
x = 18.</h3>
Strategy 2: We can find least common denominator(lcd) of both sides and multiplying both sides by that lcd to get rid denominators from both sides.
LCD of 42 and 7 is 42.
Therefore, multiplying both sides by 42, we get

x = 6 * 3
<h3>x = 18.</h3>
Answer:
OMG YES THANKS IF U EVER COMMENT ON MY QUESTION I WILL KEEP PUTTING RANDOME STUFF MWAH
Step-by-step explanation:
2.8.1

By definition of the derivative,

We have

and

Combine these fractions into one with a common denominator:

Rationalize the numerator by multiplying uniformly by the conjugate of the numerator, and simplify the result:

Now divide this by <em>h</em> and take the limit as <em>h</em> approaches 0 :

3.1.1.
![f(x) = 4x^5 - \dfrac1{4x^2} + \sqrt[3]{x} - \pi^2 + 10e^3](https://tex.z-dn.net/?f=f%28x%29%20%3D%204x%5E5%20-%20%5Cdfrac1%7B4x%5E2%7D%20%2B%20%5Csqrt%5B3%5D%7Bx%7D%20-%20%5Cpi%5E2%20%2B%2010e%5E3)
Differentiate one term at a time:
• power rule


![\left(\sqrt[3]{x}\right)' = \left(x^{1/3}\right)' = \dfrac13 x^{-2/3} = \dfrac1{3x^{2/3}}](https://tex.z-dn.net/?f=%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%27%20%3D%20%5Cleft%28x%5E%7B1%2F3%7D%5Cright%29%27%20%3D%20%5Cdfrac13%20x%5E%7B-2%2F3%7D%20%3D%20%5Cdfrac1%7B3x%5E%7B2%2F3%7D%7D)
The last two terms are constant, so their derivatives are both zero.
So you end up with
