1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex
3 years ago
11

Find the GCF of 15x^4 and 35x^2

Mathematics
2 answers:
borishaifa [10]3 years ago
6 0

Answer:

10

Step-by-step explanation:


elena55 [62]3 years ago
5 0
10, ten is the gcf that’s your answer.
You might be interested in
Subtract -6x2 – 2x + 5 from 2.x2 + 8.
tekilochka [14]

<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>

<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em><em>.</em>

<em>G</em><em>ood</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>

<em>~</em><em>p</em><em>r</em><em>a</em><em>g</em><em>y</em><em>a</em>

4 0
2 years ago
HELP ME PLEASE !!!!!?!!!!!?!!!!!!!!!!!
motikmotik

Answer:

First Graph (The left-most graph)

Step-by-step explanation:

5 0
3 years ago
Solve x42=37 x 42 = 3 7 using two different strategies. Explain each strategy.
Dafna11 [192]

Given equation : \frac{x}{42}=\frac{3}{7}.

Strategy 1: We can cross mutiply both sides remove fraction form.

On cross multiplication, we get

x * 7 = 3 * 42

7x = 126.

Dividing both sides by 7, we get

<h3>x = 18.</h3>

Strategy 2: We can find least common denominator(lcd) of both sides and multiplying both sides by that lcd to get rid denominators from both sides.

LCD of 42 and 7 is 42.

Therefore, multiplying both sides by 42, we get

42\times \frac{x}{42}=42\times\frac{3}{7}

x = 6 * 3

<h3>x = 18.</h3>
4 0
2 years ago
Please answer this for me SHOW WORK 60 points and brainliest
Sliva [168]

Answer:

OMG YES THANKS IF U EVER COMMENT ON MY QUESTION I WILL KEEP PUTTING RANDOME STUFF MWAH

Step-by-step explanation:

3 0
3 years ago
1. (5pts) Find the derivatives of the function using the definition of derivative.
andreyandreev [35.5K]

2.8.1

f(x) = \dfrac4{\sqrt{3-x}}

By definition of the derivative,

f'(x) = \displaystyle \lim_{h\to0} \frac{f(x+h)-f(x)}{h}

We have

f(x+h) = \dfrac4{\sqrt{3-(x+h)}}

and

f(x+h)-f(x) = \dfrac4{\sqrt{3-(x+h)}} - \dfrac4{\sqrt{3-x}}

Combine these fractions into one with a common denominator:

f(x+h)-f(x) = \dfrac{4\sqrt{3-x} - 4\sqrt{3-(x+h)}}{\sqrt{3-x}\sqrt{3-(x+h)}}

Rationalize the numerator by multiplying uniformly by the conjugate of the numerator, and simplify the result:

f(x+h) - f(x) = \dfrac{\left(4\sqrt{3-x} - 4\sqrt{3-(x+h)}\right)\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ f(x+h) - f(x) = \dfrac{\left(4\sqrt{3-x}\right)^2 - \left(4\sqrt{3-(x+h)}\right)^2}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ f(x+h) - f(x) = \dfrac{16(3-x) - 16(3-(x+h))}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ f(x+h) - f(x) = \dfrac{16h}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)}

Now divide this by <em>h</em> and take the limit as <em>h</em> approaches 0 :

\dfrac{f(x+h)-f(x)}h = \dfrac{16}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ \displaystyle \lim_{h\to0}\frac{f(x+h)-f(x)}h = \dfrac{16}{\sqrt{3-x}\sqrt{3-x}\left(4\sqrt{3-x} + 4\sqrt{3-x}\right)} \\\\ \implies f'(x) = \dfrac{16}{4\left(\sqrt{3-x}\right)^3} = \boxed{\dfrac4{(3-x)^{3/2}}}

3.1.1.

f(x) = 4x^5 - \dfrac1{4x^2} + \sqrt[3]{x} - \pi^2 + 10e^3

Differentiate one term at a time:

• power rule

\left(4x^5\right)' = 4\left(x^5\right)' = 4\cdot5x^4 = 20x^4

\left(\dfrac1{4x^2}\right)' = \dfrac14\left(x^{-2}\right)' = \dfrac14\cdot-2x^{-3} = -\dfrac1{2x^3}

\left(\sqrt[3]{x}\right)' = \left(x^{1/3}\right)' = \dfrac13 x^{-2/3} = \dfrac1{3x^{2/3}}

The last two terms are constant, so their derivatives are both zero.

So you end up with

f'(x) = \boxed{20x^4 + \dfrac1{2x^3} + \dfrac1{3x^{2/3}}}

8 0
2 years ago
Other questions:
  • Which of the binomials below is a factor of this trinomial?
    15·2 answers
  • Find two consecutive whole numbers such that the sum of their squares is 421
    15·1 answer
  • ( − 2 ( 4 ) x − 2 ) &lt; − 8 x + 4
    13·1 answer
  • Write the fractional equivalent (in reduced form) of each number.
    15·2 answers
  • What is the rule for this translation?
    12·1 answer
  • Simplify completely ASAPP
    15·1 answer
  • What do you need to do first to solve this equation ? -6x +4= -20
    5·1 answer
  • Which characteristic does the graph display? A) Odd function
    12·2 answers
  • (200-50) + 50 * 2 in hurry
    13·2 answers
  • Need help ASAP WILL GIVE BRAINLIEST
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!