Answer:
3/4
Step-by-step explanation:
the bone and the steak weigh = 1 5/8 pounds
The bone weighs 7/8
The meat weighs = 15/8 - 7/8
Converting 1 5/8 to an improper fraction gives 13/8
13/8 - 7/8 = 6/8 = 3/4
Sample space is all possible outcome of an event.and denotes in a set form{}
If u flipa coin twice then sample space={HH,TT,HT,TH}
Answer:
The relation is a function!
Your Domain should be...
{-1, 1, 7, 9}
Your Range should be...
{-1, 8, 9}
WHY?
Your domain is always your x-coordinates, which are the first coordinates in a pair.
Your range is always your y-coordinates, which are the second coordinates in a pair.
When listing the points, it's important to remain a relation CANNOT be a function if the x's repeat, so luckily, they do not repeat.
Also, when listing points for your range, remember, if they repeat, you should only count one of the numbers, as you can see from the answer, there was two nines, but instead I put one.
Split up the interval [0, 2] into <em>n</em> equally spaced subintervals:
![\left[0,\dfrac2n\right],\left[\dfrac2n,\dfrac4n\right],\left[\dfrac4n,\dfrac6n\right],\ldots,\left[\dfrac{2(n-1)}n,2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac2n%5Cright%5D%2C%5Cleft%5B%5Cdfrac2n%2C%5Cdfrac4n%5Cright%5D%2C%5Cleft%5B%5Cdfrac4n%2C%5Cdfrac6n%5Cright%5D%2C%5Cldots%2C%5Cleft%5B%5Cdfrac%7B2%28n-1%29%7Dn%2C2%5Cright%5D)
Let's use the right endpoints as our sampling points; they are given by the arithmetic sequence,

where
. Each interval has length
.
At these sampling points, the function takes on values of

We approximate the integral with the Riemann sum:

Recall that

so that the sum reduces to

Take the limit as <em>n</em> approaches infinity, and the Riemann sum converges to the value of the integral:

Just to check:

I'm pretty sure the answers are correct because on the question it says for every 8ft is one inch