Answer: 462 g
Explanation:molar mass is M= 63.55 +2·(12.01+14.01)= 115.59 g/mol.
Mass m= n·M = 4.0 mol·115.59 g/mol= 462.36 g
Use Charles' Law: V1/T1 = V2/T2. We assume the pressure and mass of the helium is constant. The units for temperature must be in Kelvin to use this equation (x °C = x + 273.15 K).
We want to solve for the new volume after the temperature is increased from 25 °C (298.15 K) to 55 °C (328.15 K). Since the volume and temperature of a gas at a constant pressure are directly proportional to each other, we should expect the new volume of the balloon to be greater than the initial 45 L.
Rearranging Charles' Law to solve for V2, we get V2 = V1T2/T1.
(45 L)(328.15 K)/(298.15 K) = 49.5 ≈ 50 L (if we're considering sig figs).
Answer:
25.30 gram
Explanation:
No of moles = given mass / molar mass
No of moles = 63.17/80.06
0.7890 moles
Mass of sulphar = no of moles× molar mass of sulphar
Mass of sulphur = 0.7890×32.065
25.30 gram
If there are 2 electrons in the same orbital, the spin numbers would be different for both of these 2 electrons. One would have an up spin and the other a down spin.