Answer:
ΔH⁰(11.4g NH₄NO₃) = -30.59Kj (4 sig. figs. ~mass of NH₄NO₃(s) given) (exothermic)
Explanation:
3NH₄NO₃(s) + C₁₀H₂₂(l) + 14O₂(g) => 3N₂(g) + 17H₂O(g) + 10CO₂(g)
ΔH⁰(f): 3(-365.6)Kj 1(-301)Kj 14(0)Kj 3(0)Kj 17(-241.8)Kj 10(-393.5)Kj
= -1096.8Kj = -301Kj = 0Kj = 0Kj = -4110.6Kj = -3930.5Kj
ΔHₙ°(rxn) = ∑
(ΔH˚(f)products) - ∑(ΔH˚(f)reactants)
= [3(0)Kj + 17(-241.8)Kj + (-393.5)Kj] - [(-(1096.8)Kj + (-301)Kj + (0)Kj]
= [-(8041.1) - (-1397.8)]Kj
= -6643.3Kj (for 3 moles NH₄NO₃ used in above equation)
∴ Standard Heat of Rxn = -6643.3Kj/3moles = -214.8Kj/mole NH₄NO₃(s)
ΔH°(rxn for 14.11g NH₄NO₃(s)) = (11.4g/80.04g·mol⁻¹)(-214.8Kj/mol) = 30.5937Kj ≅ 30.59Kj (4 sig. figs. ~mass of NH₄NO₃(s) given)
The answer would be option B "I believe there is life on other planets." Scientific statements have a possibility to be wrong. It's not option A because option A is a opinion. It's not option C because option C is a fact. It's not option D because option D is a opinion.
Hope this helps!
In 1 mol of CH3OH, you have 4 H-atoms (because 3 H-atoms
are attached to the C-atom, and one H-atom in the OH group). That means
in 0.500 mol of CH3OH, you have 2 H-atoms since it is halved. And then we have Avogadro's constant: 6.02 * 1023.
The question asks for how many hydrogen atoms there are in 0.500 mol CH3OH. Using the numbers that we have (Avogadro's constant and no. of H-atoms), the answer of the question will be something like:
<span>H-atoms in CH3OH = 2 * 6.02 * </span>1023<span> = ~1.2 * 10</span>24
Answer:
The correct option is b. an amino-terminal signal
Explanation:
A polypeptide that will eventually fold to become an ion channel protein, it means a kind of integral membrane protein, has an amino terminal signal that indicates its delivery to endoplasmic reticulum (ER) and then to the membrane. This type of signal usually consist in a nucleus of 6 to 12 aminoacids and one or more basic aminoacids. Once the polypeptide enters the ER, this signal is removed.