Methylhexanamine<span> and its formula is C7H17N</span>
that thing is a drug
The answer is 2
Hipe that helps
The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Given data :
mass of aspirin = 640 mg = 0.640 g
volume of water = 10 ounces = 0.295735 L
molar mass of aspirin = 180.16 g/mol
moles of aspirin = mass / molar mass = 0.00355 mol
<h3>Determine the pH of the solution </h3>
First step : <u>calculate the concentration of aspirin</u>
= moles of Aspirin / volume of water
= 0.00355 / 0.295735
= 0.012 M
Given that pKa of Aspirin = 3.5
pKa = -logKa
therefore ; Ka =
= 
From the Ice table
=
=
given that the value of Ka is small we will ignore -x
x² =
x =
Therefore
[ H⁺ ] =
given that
pH = - Log [ H⁺ ]
= - ( -3 + log 1.948 )
= 2.71 ≈ 2.7
Hence we can conclude that The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Learn more about Aspirin : brainly.com/question/2070753
Answer: (2) releases 2260 J/g of heat energy
Explanation:
Latent heat of vaporization is the amount of heat required to convert 1 mole of liquid to gas at atmospheric pressure.
Latent heat of condensation is energy released when 1 mole of vapor condenses to form liquid droplets.
The temperature does not change during this process, so heat released goes into changing the state of the substance, thus it is called latent which means hidden. The energy released in this process is same in magnitude as latent heat of vaporization. The heat of condensation of water vapour is about 2,260 J/g.
Answer:
Option A. Addition
Explanation:
Unsaturated compounds under goes addition reaction to produce saturated compounds..
In the equation given above i.e
H2C=CH2 + F–F —> FCH2CH2F
we can see that the double in H2C=CH2 disappear by the reaction of F–F to produce FCH2CH2F which has no double. This simply indicates that the F–F was added to H2C=CH2. Hence, the reaction is called addition reaction.