Answer: pH = 2,897 , basic![[H+][OH-] = 10^{-14} ==> [H+] = \frac{10^{-14}}{7,89*10^{-12} } =\frac{1}{789} \\pH= -lg([H+]) = 2,897 \\pH basic](https://tex.z-dn.net/?f=%5BH%2B%5D%5BOH-%5D%20%3D%2010%5E%7B-14%7D%20%3D%3D%3E%20%5BH%2B%5D%20%3D%20%5Cfrac%7B10%5E%7B-14%7D%7D%7B7%2C89%2A10%5E%7B-12%7D%20%7D%20%3D%5Cfrac%7B1%7D%7B789%7D%20%5C%5CpH%3D%20-lg%28%5BH%2B%5D%29%20%3D%202%2C897%20%5C%5CpH%3C7%20%3D%3D%3E%20basic)
Explanation:
Answer:
437 g
Explanation:
as mass = density × volume
Answer:
A.)
Explanation:
A change in state may seem like a chemical reaction, but it is actually a physical change. "A change in state" is basically saying that the appearance of whatever the item is, is taking a change physically. Whether this item was going through some examples of a physical change, which would be:
<em>melting (solid to liquid), evaporation (liquid to gas), condensation (gas to liquid), freezing (liquid to solid), deposition (gas to solid), and sublimation (solid to gas).</em>
A change in color, odor, taste, chemical compound, and temperature all represent a chemical reaction, because these are all things that are happening within the the item that is being given the product of a chemical change.
Think of it this way: <em>internal changes within the product: chemical. External changes within the product: physical.</em>
I hope this helps.
Answer : The maximum amount of nickel(II) cyanide is 
Explanation :
The solubility equilibrium reaction will be:

Initial conc. 0.220 0
At eqm. (0.220+s) 2s
The expression for solubility constant for this reaction will be,
![K_{sp}=[Ni^{2+}][CN^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BNi%5E%7B2%2B%7D%5D%5BCN%5E-%5D%5E2)
Now put all the given values in this expression, we get:


Therefore, the maximum amount of nickel(II) cyanide is 
The correct answer is decomposers.