The (B) answer (B) is (B) (B) (B)
Answer:
1.69.
Explanation:
- The solution = 12.0 / 7.11 = 1.687 = 1.69.
- The rule of significant figures for division states that: the results are reported to the fewest significant figures.
- 12.0 contains 3 significant figures.
- 7.11 contains 3 significant figures.
So, the solution should contain 3 significant figures.
- Now, the issue id of rounding; In a series of calculations, carry the extra digits through to the final result, then round.
- If the digit to be removed is equal to or greater than 5, the preceding digit is increased by 1.
- The digit that should be removed is 7 that is larger than 5 so increase the preceding digit by 1.
In order to form polymers, we need to chain molecules together. This involves making bonds between them.
Shifting H’s around doesn’t accomplish anything.
Forming more double bonds will have the opposite result, as it would make the molecules more stable and less likely to react with each other.
Adding oxygen to the molecule no longer makes it polybutene. That would likely result in the formation of some sort of ether, as hey would react to form a C-O-C Bond.
The only answer left is A. In order to form polyalkenes, we have to break a double bond so that it’s available to form more covalent bonds.
Hope this helps
Answer:
The molecular formula of cacodyl is C₄H₁₂As₂.
Explanation:
<u>Let's assume we have 1 mol of cacodyl</u>, in that case we'd have 209.96 g of cacodyl and the<u> following masses of its components</u>:
- 209.96 g * 22.88/100 = 48.04 g C
- 209.96 g * 5.76/100 = 12.09 g H
- 209.96 g * 71.36/100 = 149.83 g As
Now we convert those masses into moles:
- 48.04 g C ÷ 12 g/mol = 4.00 mol C
- 12.09 g H ÷ 1 g/mol = 12.09 mol H
- 149.83 g As ÷ 74.92 g/mol = 2.00 mol As
Those amounts of moles represent the amount of each component in 1 mol of cacodyl, thus, the molecular formula of cacodyl is C₄H₁₂As₂.
A. p block
from 3a-8a are in the p block including halogen