Behavior has at least six dimensions, which are: frequency, duration, latency, topography, locus, and force. Since the coach is recording how long it takes, the track coach is recording the duration behavior because duration is a synonym for time. Duration is your answer.
Answer:
Places like cities
Explanation:
Cities have more necessities when it comes to technology like live TV, technology companies, electric companies, homes in cities for things like the TV, AC, more luxurious stuff, and I can't even list more because there are so many technological reasons they use, well, technology.
It all comes down to logic and thinking.
Answer:
C) Pressure will compress a gas, reducing its volume and giving it a greater density and concentration of particles.
Explanation:
At constant temperature, pressure and volume are inversely related.
P V = constant

As the pressure increases, the gas compresses, the particles come closer reducing the volume of gas.
As we know, with decrease in volume, density increases.


Thus, the pressure of a gas is directly related to concentration of particles. Increase in pressure causes increase in concentration of the particles.
Answers :
Explanation:
Given that.
First cylinder data
Inertial I₁ = 2.4 kgm²
angular speed ω₁ = 5.8 rad/s.
Second cylinder data
inertia I₂ = 1.3 kgm²
angular speed ω₂ = 7.0 rad/s.
If the cylinders couple so they have the same rotational axis, what is the angular speed of the combination (in rad/s)?
So, the cylinder couple and move together with the same angular speed
Then, using conservation of angular momentum
L(final) = L(initial)
(I₁ + I₂) • ω = I₁•ω₁ + I₂ω₂
(2.4+1.3)•ω = 2.4 × 5.8 + 1.3 × 7
3.7•ω = 23.02
ω = 23.02 / 3.7
ω = 6.22 rad/s
The combine angular speed of the cylinder is 6.22 rad/s
Answer: The ability to move or change an object or what a wave carries is called Energy
Explanation: Waves are disturbances in physical quantities. Example of waves are light waves, sound waves, or transverse oscillations of a string. These disturbances use energy to create and propagate, for it to move the constituent particles or change the electric or magnetic fields. Therefore, power of a wave is therefore, energy transported divided by unit time caused by the oscillations of a particular wave. The derivation of a formula for the power depends on the medium -- for light waves, the power is measured by the pointing vector, whereas for oscillations on a string, the power can be computed directly by balancing forces through the application of newton law. However, for all types of waves, the formula and physical meaning of the power takes similar forms, typically depending on the square amplitude of the waves among other factors.