I don't know how good you are at sketching ... I'm terrible.
But you can put the point across in a dramatic way if you
can sketch a bowling ball and a basketball ... you'll need
to clearly identify them with the markings you sketch on
each ball.
They're the same shape and nearly the same size, but
there's a huge difference in their densities.
E=mgh. 196=5kg*9.81m/s^2*h. So h=196/(5*9.81)=4m
Answer:
<em>J=36221 Kg.m/s</em>
Explanation:
<u>Impulse-Momentum Theorem</u>
These two magnitudes are related in the following way. Suppose an object is moving at a certain speed
and changes it to
. The impulse is numerically equivalent to the change of linear momentum. Let's recall the momentum is given by

The initial and final momentums are, respectively

The change of momentum is

It is numerically equal to the Impulse J


We are given

The impulse the car experiences during that time is

J=-36221 Kg.m/s
The magnitude of J is
J=36221 Kg.m/s
If the light from the sun has higher frequencies from one side of the sun than from the other side, it is proof that the Sun is rotating.
Doppler effect states that, if a person is standing still and a source ( sound / light ) is moving towards him, the frequency of the wave emitted from the object will increase and if the source ( sound / light ) is away from him, the frequency of the wave emitted from the object will decrease.
So, if the light from the sun has higher frequencies from one side of the sun than from the other side, it means that the Sun is rotating. The higher frequencies points are the points that rotating towards Earth and lower frequencies points are the points that rotating away from Earth.
Therefore, if the light from the sun has higher frequencies from one side of the sun than from the other side, it is proof that the Sun is rotating.
To know more about Doppler Effect
brainly.com/question/15318474
#SPJ1
All of the following are non-renewable resources except
O natural gas
O oil
O minerals
O <em>water ✓ </em>
- <em>Water </em><em>is </em><em>a </em><em>renewable </em><em>source </em><em>because </em><em>evaporation </em><em>and </em><em>condensation </em><em>takes </em><em>place </em><em>everytime </em><em>on </em><em>our </em><em>planet</em>