A uranium-235 atom<span> absorbs a neutron and fissions into two new </span>atoms<span> (fission fragments), releasing three new neutrons and some binding energy. ... Several heavy elements, such as uranium, thorium, and plutonium, undergo both spontaneous fission, a form of radioactive decay and induced fission, a form of </span>nuclear<span> reaction.</span>
Here in crash test the two forces are acting on the dummy in two different directions
As we know that force is a vector quantity so we need to use vector addition laws in order to find the resultant force on it.
So here two forces are given in perpendicular direction with each other so as per vector addition law we need to use Pythagoras theorem to find the resultant of two vectors
so we can say

here given that


now we will plug in all data in the above equation


so it will have net force 4501.9 N which will be reported by sensor
Answer:
A
Explanation:
Resistors in series add. There is only one path the current can take. That's why Christmas Tree lights sometimes give a lot of trouble. If a bulb burns out, it could be any one of them and time is needed to find the burned out bulb.
That being the case R = R1 + R2
R1 = 50 ohms
R2 = 50 ohms
R = 50 + 50
R = 100 ohms
Answer A
Answer:
A
Explanation:
Iron and gadlinium are both very easily made into magnetic substances. Cobalt is also capable of being magnetized. Aluminum, put in an alloy, can make a magnetic substance, but
Aluminum by itself is not able to be magnetized.
Answer:5250 N
Explanation: ig:iihoop.vince