Answer:
c. V = k Q1 * Q2 / R1 potential energy of Q1 and Q2 separated by R
V2 / V1 = (R1 / R2) = 1/4
V2 = V1 / 4
The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186
Ignoring the air resistance it will take about 3 seconds for the object to reach the ground.We know that the acceleration due to gravity is 10m/s2.
We also know that the final velocity is 30 m/s while the initial velocity is 0 m/s
we can use the formulae for acceleration to calculate the time taken/
(final - initial velocity)/timetaken=10
(30-0)/timetaken=10
timetaken =30/10=3 seconds
Answer:
Da=(1/4)Db
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
When s = Da, t = t

When s = Db, t = 2t

Dividing the two equations

Hence, Da=(1/4)Db