Answer:
the bowling ball will move fastest
Explanation:
because it is heaviest
Answer:
Option D. 230 J
Explanation:
We'll begin by calculating the temperature change of the iron. This can be obtained as follow:
Initial temperature (T₁) = 50 °C
Final temperature (T₂) = 75 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 75 – 50
ΔT = 25 °C
Thus, the temperature change of the iron is 25 °C.
Finally, we shall determine the amount of heat energy used. This can be obtained as follow:
Mass (M) = 20 g
Change in temperature (ΔT) = 25 °C
Specific heat capacity (C) = 0.46 J/gºC
Heat (Q) =?
Q = MCΔT
Q = 20 × 0.46 × 25
Q = 230 J
Thus, the amount of heat used was 230 J
Answer:
Magnesium loses two electrons.
Explanation:
- As clear from the reaction Mg converted from <em>Mg(s) to Mg²⁺</em>, so Mg converted from the oxidation state (0) to (2+).
<em>∴ Mg losses two electrons.</em>
- Cl⁻ remains as it is, so it is considered as a catalyst and neither loss nor gain any electrons.
<em>So, the correct choice is Magnesium loses two electrons.</em>
Answer:
VP (solution) = 171.56 mmHg
Explanation:
Vapor pressure of pure solvent(P°) - Vapor pressure of solution (P') = P° . Xm
Let's replace the data:
173.11 mmHg - P' = 173.11 mmHg . Xm
Let's determine the Xm (mole fraction for solute)
Mole fraction for solute = Moles of solute / Total moles
Total moles = Moles of solute + moles of solvent.
Let's determine the moles
Moles of solvent → 623.4 g / 119.4 g/mol = 5.22 moles
Moles of solute → 9.322 g / 180.1 g/mol = 0.052 moles
Total moles = 0.052 + 5.22 = 5.272 moles
Xm = 0.052 moles / 5.272 moles = 0.009 → 9/1000
173.11 mmHg - P' = 173.11 mmHg . 9/1000
P' = - (173.11 mmHg . 9/1000 - 173.11 mmHg)
P' = 171.56 mmHg