The reaction occurs in a similar way as magnesium does, but much less vigorous. Strong heating is required to make iron powder burn in oxygen. The reaction gives out a yellow showery sparks and produces a black solid. iron reacts with dilute hydrocloric acid to give iron chloride and hydrogen gas.
Answer;
= 64561.95 g/mole
Explanation;
mass of Fe in 100g = .346g
= .346 / 55.8452 moles
= 0.0061957 moles
These represent 4 moles of Fe in the molecule so moles of hemaglobin
= 0.0061957/4
= 0.0015489 moles
these are in 100 g so mass of 1 mole = 100 / 0.0015489
= 64561.95 g / mole
molar mass of hemoglobin = 64561.95 g/mole
Answer:
The correct answer is A. 140 atm
Explanation:
We use the gas formula, which results from the combination of the Boyle, Charles and Gay-Lussac laws. According to which at a constant mass, temperature, pressure and volume vary, keeping constant PV / T. We convert the unit Celsius into Kelvin:
0 ° C = 273K, 67 ° C = 273 + 67 = 340K; 94 ° C = 273 + 94 = 367K
P1xV1 /T1= P2x V2/T2
P2= ((P1xV1 /T1)xT2)/V2
P2=((88,89atm x 17L/340K)x367K)/12L= <em>135,927625 atm</em>
The relation between force, mass of an object and its acceleration is given by following equation
F = mass of object X acceleration
The unit of Force is Newton (N)
unit of acceleration is ms⁻²
unit of mass if Kg
[all these are SI units]
Mass of object =
mass of sprinter =
Answer:
wave velocity= frequency × wave length
=1×3
=3m/s
Explanation:
The distance covered by the wave in one second is equal to its wavelength, therefore,
wave velocity=wavelength/time period
OR wave velocity= frequency× wavelength
You can assume velocity as speed here.