The final speed of the car is 2) 150 m/s
Explanation:
Since the motion of the car is a uniformly accelerated motion, we can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance covered
For the car in this problem, we have
u = 10 m/s

s = 7,467 m
Solving for v, we find the final velocity (and speed) of the car:

Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
The magnitude of the magnetic torque on the coil is 1.98 A.m²
Explanation:
Magnitude of magnetic torque in a flat circular coil is given as;
τ = NIASinθ
where;
N is the number of turns of the coil
I is the current in the coil
A is the area of the coil
θ is the angle of inclination of the coil and magnetic field
Given'
Number of turns, N = 200
Current, I = 7.0 A
Angle of inclination, θ = 30°
Diameter, d = 6 cm = 0.06 m
A = πd²/4 = π(0.06)²/4 = 0.002828 m²
τ = NIASinθ
τ = 200 x 7 x 0.002828 x Sin30
τ = 1.98 A.m²
Therefore, the magnitude of the magnetic torque on the coil is 1.98 A.m²
Low pressure has a bit less of a function than high pressure, high pressure is more useful in certain terms
Velocity change v time because ACCELERATION=CHANGE IN VELOCITY/TIME