I believe the correct gravity on the moon is 1/6 of Earth.
Take note there is a difference between 1 6 and 1/6.
HOWEVER, we should realize that the trick here is that the
question asks about the MASS of the astronaut and not his weight. Mass is an
inherent property of an object, it is unaffected by external factors such as
gravity. What will change as the astronaut moves from Earth to the moon is his
weight, which has the formula: weight = mass times gravity.
<span>Therefore if he has a mass of 50 kg on Earth, then he will
also have a mass of 50 kg on moon.</span>
Displacement is a vector quantity. So, you incorporate the vector calculations when you try to determine the resultant vector. This is the shortest path from the starting point to the endpoint. If they are moving on one axis only, you use sign conventions. For motions moving to the left, use the negative sign. If it's moving to the right, then use the positive sign. Now, it the object moves 2 km to the left, and 2 km also to the right, the displacement is zero.
Displacement = 2 km - 2km = 0
Generally, the equation is:
<span>Displacement = Distance of motion to the right - Distance of motion to the left</span>
The charge on the electron is 1.6x10^-19C. So, 10^24 of them will be a charge of 1.6x10^5C, F = q1xq2/[(4pi epsilon nought)r^2]
Answer:
3 years
Explanation:
Find the circumference of each orbit in AU.
2xπx1=6.283185307
2xπx3=18.84955592
Divide them.
18.84955592/6.283185307=3
3 years