The answer is static friction. This is the friction that involves objects that do not move.
1. a. longitudinal waves.
There are two types of waves:
- Transverse waves: in transverse waves, the oscillations of the wave occur in a direction perpendicular to the direction of propagation of the wave
- Longitudinal waves: in longitudinal waves, the oscillations of the waves occur parallel to the direction in which the waves are travelling.
So, these types of waves are called longitudinal waves.
2. d. a medium
There are two types of waves:
- Electromagnetic waves: these waves are produced by the oscillations of electric and magnetic field, and they can travel both in a medium and also in a vacuum (they do not need a medium to propagate)
- Mechanical waves: these waves are produced by the oscillations of the particles in a medium, so they need a medium to propagate - therefore, the correct choice is d. a medium
3. a. AM/FM radio
Analogue signals consist of continuous signals, which vary in a continuous range of values. On the contrary, digital signals consist of discrete signals, which can assume only some discrete values. For AM and FM radios, signals are transmitted by using analogue signals.
<u>First Symbol </u>: Cobalt (Co)
Its Group Number - 9
Its Period Number - 4
Its Family Name - Transition Metal
<u>Second Symbol</u> : Silicon (Si)
Its Group Number - 14
Its Period Number - 2
Its Family Name - Semiconductor
<u>Third Symbol</u> : Astatine (At)
Its Group Number - 17
Its Period Number - 6
Its Family Name - Halogen
<u>Fourth Symbol </u>: Magnesium (Mg)
Its Group Number - 2
Its Period Number - 3
Its Family Name - Alkaline Earth Metal
<u>Fifth Symbol</u> : Xenon (Xe)
Its Group Number - 18
Its Period Number - 5
Its Family Name - Noble Gas
I don't completely understand your drawing, although I can see that you certainly
did put a lot of effort into making it. But calculating the moment is easy, and we
can get along without the drawing.
Each separate weight has a 'moment'.
The moment of each weight is:
(the weight of it) x (its distance from the pivot/fulcrum) .
That's all there is to a 'moment'.
The lever (or the see-saw) is balanced when (the sum of all the moments
on one side) is equal to (the sum of the moments on the other side).
That's why when you're on the see-saw with a little kid, the little kid has to sit
farther away from the pivot than you do. The kid has less weight than you do,
so he needs more distance in order for his moment to be equal to yours.