Answer: The acceleration for the shuttle is 13 800m/s^2.
Explanation:
The answer is required is si unit which is m/s^2.
The first step is to convert to velocity to m/s, 1km=1000m therefore we have to multiply by 1000
5km/s=5000m/s
11.9km/s=11900m/s.
The formula for the acceleration is a=dv/t
a=11900-5000/0.5
a=13 800m/s
Answer:
height is 69.68 m
Explanation:
given data
before it hits the ground = 46 % of entire distance
to find out
the height
solution
we know here acceleration and displacement that is
d = (0.5)gt² ..............1
here d is distance and g is acceleration and t is time
so when object falling it will be
h = 4.9 t² ....................2
and in 1st part of question
we have (100% - 46% ) = 54 %
so falling objects will be there
0.54 h = 4.9 (t-1)² ...................3
so
now we have 2 equation with unknown
we equate both equation
1st equation already solve for h
substitute h in the second equation and find t
0.54 × 4.9 t² = 4.9 (t-1)²
t = 0.576 s and 3.771 s
we use here 3.771 s because 0.576 s is useless displacement in the last second before it hits the ground is 46 % of the entire distance it falls
so take t = 3.771 s
then h from equation 2
h = 4.9 t²
h = 4.9 (3.771)²
h = 69.68 m
so height is 69.68 m
Answer:
-20°C
Explanation:
The specific heat capacity of ice using the cgs system is 0.5cal/g°C
The enthalpy change is calculated as follows
ΔH=MC∅ where M represents mass C represents specific heat and ∅ represents the temperature change.
10cal = 2g×0.5cal/g°C×∅
∅=10cal/(2g×0.5cal/g°C)
∅=10°C
Final temperature= -30°C+ 10°C= -20°C
Answer: it is bad for you and can cause some crazy brain dammage and this could potentially end you life because it is harmful :p
Answer:
Mix
Explanation:
A battery has two electrodes, at one end it has the anode and the other end has the cathode. Electrons travel through the circuit from the anode (negative) to the cathode (positive), and this is the driving force that provides electricity to flow through circuits.
The anode needs to have a low electron affinity because it needs to readily release electrons, and the cathode needs to have a high electron affinity because it needs to readily accept electrons.