Draw a diagram to illustrate the problem as shown below.
The vertical component of the launch velocity is
v = (8.5 m/s)*sin30° = 4.25 m/s
The horizontal component of the launch velocity is
8.5*cos30° = 7.361 m/s
Assume that aerodynamic resistance may be ignored.
Because the horizontal distance traveled is 19 m, the time of travel is
t = 19/7.361 = 2.581 s
The downward vertical travel is modeled by
h = (-4.25 m/s)*(2.581 s) + 0.5*(9.8 m/s²)*(2.581 s)²
= 21.675 m
Answer: The height is 21.7 m (nearest tenth)
Answer:
Equilibrium quantity = 5
Equilibrium price = 40
Explanation:
given:
p = -x²-3x+80
p = 7x+5
For the equilibrium quantity the price from both the functions will be equal
thus, we have
-x² - 3x + 80 = 7x+5
⇒ x² +3x + 7x + 5 - 80 = 0
⇒x² + 10x - 75 = 0
now solving for x
x²- 5x + 15x -75 = 0
x(x-5) + 15(x-5) = 0
therefore, the two roots of the equation are
x = 5 and x = -15
since the quantity cannot be in negative
therefore, the equilibrium quantity will be = 5
now the equilibrium price can be found out by substituting the equilibrium quantity in any of the equation
thus,
p = -(5)² -3(5) + 80 = 40
or
p = 7(5) + 5 = 40
Answer:
B: Process #1: Energy is decreasing Process#2: Energy is increasing
The Kinetic Energy Formula is as follows: KE = mass x velocity^2 /2
Plug in the correct numbers into the variables!
KE = 1500 kg x 10 m/s ^2 / 2
Square the 10 m/s!
KE = 1500 kg x 100 m/s / 2
Multiply!
KE = 150,000 / 2
Divide!
KE = 75,000 Newton-meters or Joules!