<span>When a large number of atoms of the same isotope are observed they will have a statistically consistent half life.
</span>An unstable nucleus contains a near excessive number of RNA chemical can spontaneously break apart into one or more nuclei all with a lighter state. #believe
Answer:
0.0159m
Explanation:
9 M
Explanation:
Lead(II) chloride,
PbCl
2
, is an insoluble ionic compound, which means that it does not dissociate completely in lead(II) cations and chloride anions when placed in aqueous solution.
Instead of dissociating completely, an equilibrium rection governed by the solubility product constant,
K
sp
, will be established between the solid lead(II) chloride and the dissolved ions.
PbCl
2(s]
⇌
Pb
2
+
(aq]
+
2
Cl
−
(aq]
Now, the molar solubility of the compound,
s
, represents the number of moles of lead(II) chloride that will dissolve in aqueous solution at a particular temperature.
Notice that every mole of lead(II) chloride will produce
1
mole of lead(II) cations and
2
moles of chloride anions. Use an ICE table to find the molar solubility of the solid
PbCl
2(s]
⇌
Pb
2
+
(aq]
+
2
Cl
−
(aq]
I
−
0
0
C
x
−
(+s)
(
+
2
s
)
E
x
−
s
2
s
By definition, the solubility product constant will be equal to
K
sp
=
[
Pb
2
+
]
⋅
[
Cl
−
]
2
K
sp
=
s
⋅
(
2
s
)
2
=
s
3
This means that the molar solubility of lead(II) chloride will be
4
s
3
=
1.6
⋅
10
−
5
⇒
s
= √
1.6
4
⋅
10
−
5 =
0.0159 M
Potential : a yoyo before it’s been released
Kinetic : skateboarding
<span>Helium has two valence electrons.</span>
Answer: The molar enthalpy of formation for paraffin wax is -2460.5 kJ
Explanation:
The balanced chemical reaction is,

The expression for enthalpy change is,
![\Delta H=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
![\Delta H=[(n_{CO_2}\times \Delta H_{CO_2})+(n_{H_2O}\times \Delta H_{H_2O})]-[(n_{O_2}\times \Delta H_{O_2})+(n_{C_{25}H_{52}}\times \Delta H_{C_{25}H_{52}})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BCO_2%7D%5Ctimes%20%5CDelta%20H_%7BCO_2%7D%29%2B%28n_%7BH_2O%7D%5Ctimes%20%5CDelta%20H_%7BH_2O%7D%29%5D-%5B%28n_%7BO_2%7D%5Ctimes%20%5CDelta%20H_%7BO_2%7D%29%2B%28n_%7BC_%7B25%7DH_%7B52%7D%7D%5Ctimes%20%5CDelta%20H_%7BC_%7B25%7DH_%7B52%7D%7D%29%5D)
where,
n = number of moles
(as heat of formation of substances in their standard state is zero
Now put all the given values in this expression, we get
![-14800=[(25\times -393.5)+(26\times -285.5)]-[(38\times 0)+(1\times \Delta H_{C_{25}H_{52}})]](https://tex.z-dn.net/?f=-14800%3D%5B%2825%5Ctimes%20-393.5%29%2B%2826%5Ctimes%20-285.5%29%5D-%5B%2838%5Ctimes%200%29%2B%281%5Ctimes%20%5CDelta%20H_%7BC_%7B25%7DH_%7B52%7D%7D%29%5D)

Therefore, the molar enthalpy of formation for paraffin wax is -2460.5 kJ