1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
barxatty [35]
2 years ago
10

Repetitive movements at work can lead to injuries. True or False

Engineering
1 answer:
OverLord2011 [107]2 years ago
8 0
Answer

True

Explanation

RSI can occur when you do repetitive movements. Those movements can cause your muscles and tendons to become damaged over time. Some activities that can increase your risk for RSI are: stressing the same muscles through repetition.
You might be interested in
(1) Estimate the specific volume in cm3 /g for carbon dioxide at 310 K and (a) 8 bar (b) 75 bar by the virial equation and compa
ludmilkaskok [199]

Answer:

70.66 cm^3

The specific volume for P = 70.66  is within 1% of the experimental value while the viral equation will be inaccurate when the second viral coefficient is used )

Explanation:

Viral equation : Z = 1 + Bp + Cp^2 + Dp^3 + -----

Viral equation can also be rewritten as :

Z = 1 + B ( P/RT )

B ( function of time )

Temperature = 310 K

P1 = 8 bar

P2 = 75 bar

<u>Determine the specific volume in cm^3 </u>

V = 70.66 cm^3

<u>b) comparing the specific volumes to the experimental values </u>

70.58 and 3.90

The specific volume for P = 70.66  is within 1% of the experimental value while the viral equation will be inaccurate when the second viral coefficient is used )

attached below is the detailed solution

3 0
2 years ago
Consider a plane composite wall that is composed of two materials of thermal conductivities kA = 0.1 W/m*K and kB = 0.04 W/m*K a
nadya68 [22]

Answer:

q=39.15 W/m²

Explanation:

We know that

Thermal resistance due to conductivity given as

R=L/KA

Thermal resistance due to heat transfer coefficient given as

R=1/hA

Total thermal resistance

R_{th}=\dfrac{L_A}{AK_A}+\dfrac{L_B}{AK_B}+\dfrac{1}{Ah_1}+\dfrac{1}{Ah_2}+\dfrac{1}{Ah_3}

Now by putting the values

R_{th}=\dfrac{0.01}{0.1A}+\dfrac{0.02}{0.04A}+\dfrac{1}{10A}+\dfrac{1}{20A}+\dfrac{1}{0.3A}

R_{th}=4.083/A\ K/W

We know that

Q=ΔT/R

Q=\dfrac{\Delta T}{R_{th}}

Q=A\times \dfrac{200-40}{4.086}

So heat transfer per unit volume is 39.15 W/m²

q=39.15 W/m²

4 0
3 years ago
assume a five layer network model. There are 700 bytes of application data. There is a 20 bye header at the transport layer, a 2
amm1812

Answer: The overhead percentage is 7.7%.

Explanation:

We call overhead, to all those bytes that are delivered to the physical layer, that don't carry real data.

We are told that we have 700 bytes of application data, so all the other bytes are simply overhead, i.e. , 58 bytes composed by the transport layer header, the network layer header, the 14 byte header at the data link layer and the 4 byte trailer at the data link layer.

So, in order to assess the overhead percentage, we divide the overhead bytes between the total quantity of bytes sent to the physical layer, as follows:

OH % = (58 / 758) * 100 = 7.7 %

4 0
3 years ago
If the head loss in a 30 m of length of a 75-mm-diameter pipe is 7.6 m for a given flow rate of water, what is the total drag fo
Stolb23 [73]

Answer:

526.5 KN

Explanation:

The total head loss in a pipe is a sum of pressure head, kinetic energy head and potential energy head.

But the pipe is assumed to be horizontal and the velocity through the pipe is constant, Hence the head loss is just pressure head.

h = (P₁/ρg) - (P₂/ρg) = (P₁ - P₂)/ρg

where ρ = density of the fluid and g = acceleration due to gravity

h = ΔP/ρg

ΔP = ρgh = 1000 × 9.8 × 7.6 = 74480 Pa

Drag force over the length of the pipe = Dynamic pressure drop over the length of the pipe × Area of the pipe that the fluid is in contact with

Dynamic pressure drop over the length of the pipe = ΔP = 74480 Pa

Area of the pipe that the fluid is in contact with = 2πrL = 2π × (0.075/2) × 30 = 7.069 m²

Drag Force = 74480 × 7.069 = 526468.1 N = 526.5 KN

3 0
3 years ago
10. An engineer is designing a total hip implant. She intends to make the femoral stem out of titanium because it forms a good i
creativ13 [48]

Answer:

Yes. She should be worried about corrosion. The 18-8 stainless exhibits intergranular corrosion due to high (0.08%) carbon content and gross pitting due to low molybdenum content.

Explanation: lol

8 0
3 years ago
Other questions:
  • A tank contains liquid nitrogen at -190℃ is suspended in a vacuum shell by three stainless steel rods 0.80 cm in diameter and 3
    8·1 answer
  • Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 K, 1 bar, with a volumetric flow rate o
    15·2 answers
  • 12. Dies are turned using a special tool called a/an
    10·1 answer
  • A non-linear analog force sensor outputs the following voltages for different forces.
    7·1 answer
  • Air at 7 deg Celcius enters a turbojet engine at a rate of 16 kg/s and at a velocity of 300 m/s (relative to engine). Air is hea
    7·1 answer
  • Consider a drainage basin having 60% soil group A and 40% soil group B. Five years ago the land use pattern in the basin was ½ w
    12·1 answer
  • Wiring harnesses run
    12·1 answer
  • Often an attacker crafts e-mail attacks containing malware designed to take advantage of the curiosity or even greed of the reci
    14·1 answer
  • Which of these is an example of a service job?
    7·1 answer
  • The reversible and adiabatic process of a substance in a compressor begins with enthalpy equal to 1,350 kJ/kg, and ends with ent
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!