Answer:
Attached is the complete question but the weight of the mailbox and cross bar differs from the given values which are : weight of mail box = 3.2 Ib, weight of the uniform cross member = 10.3 Ib
Answer : moment of inertia = 186.7 Ib - in
Explanation:
Given data
weight of the mailbox = 3.2 Ib
weight of the uniform cross member = 10.3 Ib
The origin is of mailbox and cross member is 0
The perpendicular distance from Y axis of centroid of the mailbox
= 4 + (25/2) = 16.5"
The centroid of the bar =( ( 1 + 25 + 4 + 4 ) / 2 ) - 4 = 13"
therefore The moment of Inertia( Mo) = (3.2 * 16.5) + ( 10.3 * 13)
= 52.8 + 133.9 = 186.7 Ib-in
Answer:
Stephen Covey believes this principle is the key to effective interpersonal communication. Seek first to understand, then to be understood. This habit is about communicating with others. It's about developing the habit of listening carefully and really understanding the other person BEFORE giving your thoughts.
Explanation:
Answer:
Mechanical Advantage Formula
The efficiency of a machine is equal to the ratio of its output to its input. It is also equal to the ratio of the actual and theoretical MAs. But, it does not mean that low-efficiency machines are of limited use. An automobile jack, for example, have to overcome a great deal of friction and therefore it has low efficiency. But still, it is extremely valuable because small effort can be applied to lift a great weight.
Also, in another way the mechanical advantage is the force generated by a machine to the force applied to it which is applied in assessing the performance of the machine.
The mechanical advantage formula is:
MA = FBFA
Explanation:
MAmechanical advantageFBthe force of the object
FAthe effort to overcome the force
Answer: The energy system related to your question is missing attached below is the energy system.
answer:
a) Work done = Net heat transfer
Q1 - Q2 + Q + W = 0
b) rate of work input ( W ) = 6.88 kW
Explanation:
Assuming CPair = 1.005 KJ/Kg/K
<u>Write the First law balance around the system and rate of work input to the system</u>
First law balance ( thermodynamics ) :
Work done = Net heat transfer
Q1 - Q2 + Q + W = 0 ---- ( 1 )
rate of work input into the system
W = Q2 - Q1 - Q -------- ( 2 )
where : Q2 = mCp T = 1.65 * 1.005 * 293 = 485.86 Kw
Q2 = mCp T = 1.65 * 1.005 * 308 = 510.74 Kw
Q = 18 Kw
Insert values into equation 2 above
W = 6.88 Kw
Answer:
la escuela,en casa y listo...............