Answer:
16.2 cents
Explanation:
Given that a homeowner consumes 260 kWh of energy in July when the family is on vacation most of the time.
Where Base monthly charge of $10.00. First 100 kWh per month at 16 cents/kWh. Next 200 kWh per month at 10 cents/kWh. Over 300 kWh per month at 6 cents/kWh.
For the first 100 kWh:
16 cent × 100 = 1600 cents = 16 dollars
Since 1 dollar = 100 cents
For the remaining energy:
260 - 100 = 160 kwh
10 cents × 160 = 1600 cents = 16 dollars
The total cost = 10 + 16 + 16 = 42 dollars
Note that the base monthly of 10 dollars is added.
The cost of 260 kWh of energy consumption in July is 42 dollars
To determine the average cost per kWh for the month of July, divide the total cost by the total energy consumed.
That is, 42 / 260 = 0.1615 dollars
Convert it to cents by multiplying the result by 100.
0.1615 × 100 = 16.15 cents
Approximately 16.2 cents
Answer:
repeated?
Explanation:
not really sure what type of answer choices you have
Answer:
(Interest rate/number of payments)*$170000= interest for the first month.
Interest amounts for all the months of repayment plus $170000=Total loan cost
Explanation:
Interest is the amount you pay for taking a loan from a bank on top of the original amount borrowed.
Factors affecting how much interest is paid are; the principal amount, the loan terms, repayment schedule, the repayment amount and the rate of interest.
The interest paid=(rate of interest/number of payments to make)*principal amount borrowed.
You divide the interest with number of payments done in a year where monthly are divided by 12.Multiplying it by loan balance in the first month which is your principal amount gives the interest rate to pay for that month.
You new loan balance will be= Principal -(repayment-interest)
Do this for the period the loan should take.
Add all the interest amount to original borrowed amount to get total cost of the loan after the period of time.
Answer:
2.8
Explanation:
The ideal mechanical advantage of the pulley IMA = D'/D where D' = diameter of output pulley = 7 inches and D = diameter of input pulley = 2.5 inches
So, IMA = D'/D
= 7/2.5
= 2.8
So, the ideal mechanical advantage of the pulley IMA = 2.8