1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igomit [66]
3 years ago
12

A heat pump receives heat from a lake that has an average wintertime temperature of 6o C and supplies heat into a house having a

n average temperature of 25o C. (a) If the house loses heat to the atmosphere at the rate of 60,000 kJ/h, determine the minimum power supplied to the heat pump (in kW) that can maintain the interior temperature of the house at 25o C. (b) Suppose the heat pump absorbs energy from
Engineering
1 answer:
Dafna1 [17]3 years ago
5 0

Answer:

a) \dot W = 1.062\,kW

Explanation:

a) Let consider that heat pump is reversible, so that the Coefficient of Performance is:

COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}

COP_{HP} = \frac{298.15\,K}{298.15\,K-279.15\,K}

COP_{HP} = 15.692

The minimum heat received by the house must be equal to the heat lost to keep the average temperature constant. Hence:

\dot Q_{H} = 60000\,\frac{kJ}{h}

The minimum power supplied to the heat pump is:

\dot W = \frac{\dot Q_{H}}{COP}

\dot W = \frac{\left(60000\,\frac{kJ}{h}  \right)\cdot \left(\frac{1\,h}{3600\,s}  \right)}{15.692}

\dot W = 1.062\,kW

You might be interested in
Two loads connected in parallel draw a total of 2.4 kW at 0.8 pf lagging from a 120-V rms, 60-Hz line. One load absorbs 1.5 kW a
stealth61 [152]

Answer: a) 0.948 b) 117.5µf

Explanation:

Given the load, a total of 2.4kw and 0.8pf

V= 120V, 60 Hz

P= 2.4 kw, cos θ= 80

P= S sin θ - (p/cos θ) sin θ

= P tan θ(cos^-1 (0.8)

=2.4 tan(36.87)= 1.8KVAR

S= 2.4 + j1. 8KVA

1 load absorbs 1.5 kW at 0.707 pf lagging

P= 1.5 kW, cos θ= 0.707 and θ=45 degree

Q= Ptan θ= tan 45°

Q=P=1.5kw

S1= 1.5 +1.5j KVA

S1 + S2= S

2.4+j1.8= 1.5+1.5j + S2

S2= 0.9 + 0.3j KVA

S2= 0.949= 18.43 °

Pf= cos(18.43°) = 0.948

b.) pf to 0.9, a capacitor is needed.

Pf = 0.9

Cos θ= 0.9

θ= 25.84 °

(WC) V^2= P (tan θ1 - tan θ2)

C= 2400 ( tan (36. 87°) - tan (25.84°)) /2 πf × 120^2

f=60, π=22/7

C= 117.5µf

7 0
2 years ago
Which of the following is described as a way engineers can test and investigate how things should be under certain circumstances
goblinko [34]

Answer:

The option that is best described as a way engineers can test and investigate how things should be under certain circumstances is;

  • Modeling

Explanation:

Modeling is a tool an engineer can use for the physical representation of a system that will facilitate the definition, testing and analysis, communication, data generation, data verification and data validation of given concepts

Models also aid in setting specifications, supporting designs, and verification of a given system

Therefore, with modeling engineers can investigate the behavior of systems under given environmental conditions.

3 0
3 years ago
Since you became discouraged not being able to find a job in the San Diego area, you enlarged the area in which you looked for a
nordsb [41]

Answer:

need points 48986

Explanation:

5 0
3 years ago
An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500
Assoli18 [71]

Answer: The exit temperature of the gas in deg C is 32^{o}C.

Explanation:

The given data is as follows.

C_{p} = 1000 J/kg K,   R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)

P_{1} = 100 kPa,     V_{1} = 15 m^{3}/s

T_{1} = 27^{o}C = (27 + 273) K = 300 K

We know that for an ideal gas the mass flow rate will be calculated as follows.

     P_{1}V_{1} = mRT_{1}

or,         m = \frac{P_{1}V_{1}}{RT_{1}}

                = \frac{100 \times 15}{0.5 \times 300}  

                = 10 kg/s

Now, according to the steady flow energy equation:

mh_{1} + Q = mh_{2} + W

h_{1} + \frac{Q}{m} = h_{2} + \frac{W}{m}

C_{p}T_{1} - \frac{80}{10} = C_{p}T_{2} - \frac{130}{10}

(T_{2} - T_{1})C_{p} = \frac{130 - 80}{10}

(T_{2} - T_{1}) = 5 K

T_{2} = 5 K + 300 K

T_{2} = 305 K

           = (305 K - 273 K)

           = 32^{o}C

Therefore, we can conclude that the exit temperature of the gas in deg C is 32^{o}C.

8 0
3 years ago
4.116 The lid of a roof scuttle weighs 75 lb. It is hinged at corners A and B and maintained in the desired position by a rod CD
babunello [35]

Answer:

(a) The magnitude of force is 116.6 lb, as exerted by the rod CD

(b) The reaction at A is (-72.7j-38.1k) lb and at B it is (37.5j) lb.

Explanation:

Step by step working is shown in the images attached herewith.

For this given system, the coordinates are the following:

A(0, 0, 0)

B(26, 0, 0)

And the value of angle alpha is 20.95°

Hope that answers the question, have a great day!

5 0
3 years ago
Other questions:
  • You find a publication from a research laboratory that identifies a new catalyst for ammonia synthesis. The article contains the
    6·1 answer
  • Compute the fundamental natural frequency of the transverse vibration of a uniform beam of rectanqular cross section, with one e
    11·2 answers
  • Who knows about welding ??
    7·1 answer
  • What is a two stroke engine and what is a four stroke engine, please keep the definitions as simple as can be and please explain
    8·2 answers
  • Heat in the amount of 100 kJ is transferred directly from a hot reservoir at 1200 K to a cold reservoir at 600 K. Calculate the
    15·1 answer
  • You are given a partial implementation of one header file, GildedRose.hpp. Item is a class that holds the information for each i
    6·1 answer
  • The minimum fresh air requirement of a residential building is specified to be 0.35 air changes per hour (ASHRAE, Standard 62, 1
    10·1 answer
  • One who is trained in math, science and physics in order to work in a branch of engineering
    7·2 answers
  • Digital leaders are people who __ others down a particular path.
    13·2 answers
  • 48/64 reduced to its lowest term
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!