Answer:
Airplanes' wings are curved on top and flatter on the bottom. That shape makes air flow over the top faster than under the bottom. As a result, less air pressure is on top of the wing. This lower pressure makes the wing, and the airplane it's attached to, move up.
Explanation:
Answer:
The correct answer is A : Orientation dependence of normal and shear stresses at a point in mechanical members
Explanation:
Since we know that in a general element of any loaded object the normal and shearing stresses vary in the whole body which can be mathematically represented as

And 
Mohr's circle is the graphical representation of the variation represented by the above 2 formulae in the general oriented element of a body that is under stresses.
The Mohr circle is graphically displayed in the attached figure.
Answer:
The governing ratio for thin walled cylinders is 10 if you use the radius. So if you divide the cylinder´s radius by its thickness and your result is more than 10, then you can use the thin walled cylinder stress formulas, in other words:
- if
then you have a thin walled cylinder
or using the diameter:
- if
then you have a thin walled cylinder
100: D, third law of motion
101: D, second law of motion
Answer:
Explanation:
The VC-T engine (for "variable compression, turbocharged") can adjust its compression ratio between 8:1 and 14:1 on the fly, offering high-compression efficiency under light loads and the low compression needed for turbocharged power under hard acceleration.