1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
3 years ago
6

Stress that acts in the plane of a cut section, rather than at right angles to the section is called:_______

Engineering
1 answer:
snow_lady [41]3 years ago
8 0

probably B, because stress and tension are alike.

You might be interested in
Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow ra
gladu [14]

Answer:

a) T_{2}=837.2K

b) e=91.3 %

Explanation:

A) First, let's write the energy balance:

W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})  (The enthalpy of an ideal gas is just function of the temperature, not the pressure).

The Cp of air is: 1.004 \frac{kJ}{kgK} And its specific R constant is 0.287 \frac{kJ}{kgK}.

The only unknown from the energy balance is T_{2}, so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K

B) The isentropic efficiency (e) is defined as:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}

Where {h_{2s} is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because h_{2}-h_{1} can be obtained from the energy balance  \frac{W}{m}=h_{2}-h_{1}

h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}

An entropy change for an ideal gas with  constant Cp is given by:

s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})

You can review its deduction on van Wylen 6 Edition, section 8.10.

For the isentropic process the equation is:

0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})

Applying logarithm properties:

ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}

Then,

T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K

So, now it is possible to calculate h_{2s}-h_{1}:

h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}

Finally, the efficiency can be calculated:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3 %

4 0
4 years ago
Which option identifies the type of power system Tommy will design in the following scenario?
Sedaia [141]

Answer:

diagram of an electrical curcuit

an sketch of an HVAC system

Also 3D image of a hydrualic piston

se

7 0
3 years ago
Used ______ must be hot drained for 12 hours or crushed before disposal.
WITCHER [35]

Answer:

A

Explanation:

The answer is towels because towels after a little bit of just sitting around have a chemical reaction that cam cause them to spontaneously combust

5 0
3 years ago
que sabemos de la revolución industrial y como ese proceso impulso el uso de los controles eléctricos en las industrias
Alex Ar [27]

Answer:

░░░░░▐▀█▀▌░░░░▀█▄░░░

░░░░░▐█▄█▌░░░░░░▀█▄░░

░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░

░░░░▄▄▄██▀▀▀▀░░░░░░░

░░░█▀▄▄▄█░▀▀░░

░░░▌░▄▄▄▐▌▀▀▀░░ This is Bob

▄░▐░░░▄▄░█░▀▀ ░░

▀█▌░░░▄░▀█▀░▀ ░░ Copy And Paste Him onto all of ur brainly answers

░░░░░░░▄▄▐▌▄▄░░░ So, He Can Take

░░░░░░░▀███▀█░▄░░ Over brainly

░░░░░░▐▌▀▄▀▄▀▐▄░░

░░░░░░▐▀░░░░░░▐▌░░

░░░░░░█░░░░░░░░█

Explanation:

8 0
3 years ago
The electron beam in a TV picture tube carries 1015 electrons per second. As a design engineer, determine the voltage needed to
leonid [27]

Answer:

The voltage needed to accelerate the electron beam is 2.46 x 10^16 Volts

Explanation:

The rate of electron flow is given as:

q = 1015 electrons per second

The total current is given by:

Total Current = (Rate of electron flow)(Charge on one electron)

Total Current = I = (1015 electrons/s)(1.6 x 10^-19 C/electron)

I = 1.624 x 10^-16 A

Now, we know that electric power is given as:

Electric Power = Current x Voltage

P = IV

V = P/I

V = 4 W/1.624 X 10^-16 A

<u>V = 2.46 x 10^16 Volts</u>

6 0
3 years ago
Other questions:
  • The purpose of adjusting your mirrors is to _________.
    6·1 answer
  • The ice on the rear window of an automobile is defrosted by attaching a thin, transparent, film type heating element to its inne
    8·1 answer
  • At what distance should the warning triangle be placed if a vehicle breaks down on the autobahn?
    5·1 answer
  • What is the definition of flexible sequencing
    5·1 answer
  • A(n) _____ is a stationary insulated wire wrapped in a circular shape around iron pole shoes located inside the starter motor ho
    13·1 answer
  • What is a smooth flow of air over a surface is called?
    13·1 answer
  • A concrete block making company is developing an aggregate capacity plan from the following sales forecast for its 6” and 8” con
    7·1 answer
  • I gave 15 min to finish this java program
    5·1 answer
  • A blizzard is a massive snowstorm. Definitions vary, but for our purposes, we will assume that a blizzard is characterized by bo
    6·1 answer
  • A master precision square is used to validate the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!