Answer: The correct answer is option E
Explanation:
Sodium/potassium pump is a mechanism that involves the movement of sodium ions (Na+) out of a cell and potassium ions (K+) into a cell, thereby regulating concentration of ions on both sides of a typical cell membrane.
In this situation, the sodium-potassium pump is usually helps in the establishment of the resting potential. The potassium voltage channels normally closes before the membrane potential is brought to a resting level.
In summary, sodium/potassium pump helps to maintain a balance in the system.
Answer:
Frequency, f = 0.6 Hz
Explanation:
We have,
Number of waves passing through a point are 3
Time for which the waves are passing is 5 seconds
It is required to find the frequency of a wave. The frequency of a wave is defined as the no of waves per unit time. So,

So, the frequency of a wave is 0.6 Hz.
Answer:
elliptical galaxy
Explanation
:The combination of the two galaxies then forms what appears to be an elliptical galaxy as the arms begin to disappear. The merger of gasses creates new stars, and the new shape becomes more elliptical, globular, or sometimes irregular.
The mass of a NaCl solution that is required to prepare 0.40 L of a 0.75 M solution is 17.55g. Details about mass can be found below.
<h3>How to calculate mass?</h3>
The mass of a substance can be calculated by multiplying the number of moles by its molar mass.
However, the number of moles of a solution must be initially calculated by using the following formula:
molarity = no of moles ÷ volume
no of moles = 0.75 × 0.40
no of moles = 0.3 moles
mass of NaCl = 0.3 × 58.5 = 17.55g
Therefore, the mass of a NaCl solution that is required to prepare 0.40 L of a 0.75 M solution is 17.55g.
Learn more about mass at: brainly.com/question/19694949
#SPJ1
The balanced chemical reaction would be as follows:
<span>5P4O6 +8I2 ---> 4P2I4 +3P4O10
We are given the amount of reactants used for the reaction. We first need to determine the limiting reactant from the given amounts. We do as follows:
8.80 g P4O6 (1 mol / </span><span>219.88 g) = 0.04 mol P4O6
12.37 g I2 ( 1 mol / </span><span>253.809 g ) = 0.05 mol I2
Therefore, the limiting reactant is iodine since less it is being consumed completely in the reaction. We calculate the amount of P2I4 prepared as follows:
0.05 mol I2 ( 4 mol P2I4 / 8 mol I2 ) (</span><span>569.57 g / 1 mol) = 14.24 g P2I4</span>