Answer:
B
Explanation:
This is a physics question, know that force is equals to mass divided by acceleration (acc.), so if the same force is applied, say 10 Newton and the mass of A is 2 and the mass of B is 4, then the acceleration of A is 0.2 and that of B is 0.4 by equating, and this applies to all cases.
Answer:
The tube should be held vertically and perpendicular to the ground.
Explanation:
Answer: The tube should be held vertically and perpendicular to the ground. The reason is as follows:
Reasoning:
The power lines are parallel to the ground hence, their electric field will be perpendicular to the ground and equipotential surface will be cylindrical.
Hence, if you will put fluorescent tube parallel to the ground then both the ends of the tube will lie on the same equipotential surface and the potential difference will be zero.
So, to maximize the potential the ends of the tube must be on different equipotential surfaces. The surface which is near to the power line has high potential value and the surface which is farther from the line has lower potential value.
hence, to maximize the potential difference, the tube must be placed perpendicular to the ground.
Answer:
Explanation:
The work done is defined as the product of force applied in the direction of displacement and the displacement.
W = F x d x Cosθ
where, F is the force applied, d be the displacement and θ be the angle between the displacement and force.
For the normal forces, the angle between the displacement and the force applied is 90 degree, and the value of Cos 90 is zero, so the work done is zero.