Explanation:
PEgrav = m *• g • h
In the above equation, m represents the mass of the object, h represents the height of the object and g represents the gravitational field strength (9.8 N/kg on Earth) - sometimes referred to as the acceleration of gravity.
www.physicsclassroom.com › energy
Potential Energy - The
The kinetic energy of an object of mass m and velocity v is given by

Let's call

the initial speed of the car, so that its initial kinetic energy is

where m is the mass of the car.
The problem says that the car speeds up until its velocity is twice the original one, so

and by using the new velocity we can calculate the final kinetic energy of the car

so, if the velocity of the car is doubled, the new kinetic energy is 4 times the initial kinetic energy.
Option c) 1.5 V
Explanation:
<em>As the circuit is build in series first we will find the current passing through the complete circuit. Current stays the same in each element is the series cirucuit, however, the voltage is different.</em>
Voltage is given by the following formula:
V = IR
<em>Because we have to find current through whole circuit, we will first find resistance of the whole circuit.</em>
Equivalent Resistance R(eq): R1 + R2 = 60 + 60 = 120 ohm
Current passing through whole circuit be:
= 0.025
Now we will find out the voltage between C and D:
Current stays the same in series circuit: I = 0.025 c
Resistance between C and D is, R = 60 ohm
Voltage becomes, V = IR = 0.025 * 60 = 1.5 V
Water is a very unique substance because it can exist in all three phases of matter (solid, liquid, gas) within the normal temperature ranges found on Earth. When one observes the phase of matter of water, one observes a property of matter.
Answer:
0.108 rad/s².
Explanation:
Given that
Initial angular velocity ,ωi = 0 rad/s
Final angular velocity ωf= 0.5 rev/s
We know that
1 rev/s = 6.28 rad/s
ωf= 3.14 rad/s
t= 28.9 s
We know that (if acceleration is constant)
ωf=ωi + α t
α=Angular acceleration
3.14 = 0 + α x 28.9
Therefore the acceleration will be 0.108 rad/s².
Therefore the answer will be 0.108 rad/s².