Answer:
Are transferred completely from the valence shell of an element to the other
Explanation:
Basically, to form a chemical bond, you either transfer or you share. When you share, it is a case of covalent bonding which can be in several other forms. When there is a transfer, it is a case of ionic bonding.
The basic explanation for this is that while some atoms are electronically sufficient, some are electronically deficient. This means while some atoms are having an excess number of electrons, then some are having less number of electrons.
To satisfy both parties, there must be a transfer if electrons between the two parties. While the one with the excess numbers serves as the donor, the one with insufficient number of electrons serve as the acceptor
<span>Step 1 is to determine the mass of each part
Mass of Ca is 40.08 g
Mass of C is 12.01 g
Mass of O is 16.00 x 3 = 48.00 g
Step 2 is to determine the total mass of the compound
Total mass of CaCO3 is 40.08 + 12.01 + 48.00 = 100.09 g
Step 3 is to determine the % of each part using the following formula:
Mass of part / total mass x 100 =
40.08 / 100.09 x 100 = 40.04 % Ca
12.01 / 100.09 x 100 = 12.00 % C
48.00 / 100.09 x 100 = 47.96 % O
Step 4 is to double check by adding all percentages. If they equal 100, then I probably did it right. :)
40.04
+12.00
+47.96
=100.00</span><span>
</span>
Answer:The electron has a negative charge and the proton has a positive charge, and these charges work against each other to make the electromagnetic force that holds the entire atom together.
Explanation:
This is the answer
Answer:
C(graphite) → C(diamond), ΔH = - 0.45 kcal
CH4 + 2O2 → CO2 + 2H2O + 212,800 cal
Explanation:
C(graphite) → C(diamond), ΔH = - 0.45 kcal
CH4 + 2O2 → CO2 + 2H2O + 212,800 cal
These reactions are exothermic reaction because heat is evolved.
The energy changes occur during the bonds formation and bonds breaking.
There are two types of reaction endothermic and exothermic reaction.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol