Answer: -105 kJ
Explanation:-
The balanced chemical reaction is,

The expression for enthalpy change is,
![\Delta H=\sum [n\times B.E(reactant)]-\sum [n\times B.E(product)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Csum%20%5Bn%5Ctimes%20B.E%28reactant%29%5D-%5Csum%20%5Bn%5Ctimes%20B.E%28product%29%5D)
![\Delta H=[(n_{N_2}\times B.E_{N_2})+(n_{H_2}\times B.E_{H_2}) ]-[(n_{NH_3}\times B.E_{NH_3})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BN_2%7D%5Ctimes%20B.E_%7BN_2%7D%29%2B%28n_%7BH_2%7D%5Ctimes%20B.E_%7BH_2%7D%29%20%5D-%5B%28n_%7BNH_3%7D%5Ctimes%20B.E_%7BNH_3%7D%29%5D)
![\Delta H=[(n_{N_2}\times B.E_{N\equiv N})+(n_{H_2}\times B.E_{H-H}) ]-[(n_{NH_3}\times 3\times B.E_{N-H})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BN_2%7D%5Ctimes%20B.E_%7BN%5Cequiv%20N%7D%29%2B%28n_%7BH_2%7D%5Ctimes%20B.E_%7BH-H%7D%29%20%5D-%5B%28n_%7BNH_3%7D%5Ctimes%203%5Ctimes%20B.E_%7BN-H%7D%29%5D)
where,
n = number of moles
Now put all the given values in this expression, we get
![\Delta H=[(1\times 945)+(3\times 432)]-[(2\times 3\times 391)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%281%5Ctimes%20945%29%2B%283%5Ctimes%20432%29%5D-%5B%282%5Ctimes%203%5Ctimes%20391%29%5D)

Therefore, the enthalpy change for this reaction is, -105 kJ
Answer:
Plantae. Plants are multicellular and most don't move, although gametes of some plants move using cilia or flagella. Organelles including nucleus, chloroplasts are present, and cell walls are present. Nutrients are acquired by photosynthesis (they all require sunlight).
A solution with a higher concentration of hydroxide ions than hydrogen ions is basic solution.
This solution formed by Base dissolved in water and release hydroxide ions.
The PH of the solution is greater than 7
Answer:
Calculating Atomic Mass
Change each percent abundance into decimal form by dividing by 100. Multiply this value by the atomic mass of that isotope. Add together for each isotope to get the average atomic mass.
Explanation:
have a nice day
Answer: 318 K
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 231 kPa
= final pressure of gas = 168 kPa
= initial volume of gas = 3.25 L
= final volume of gas = 4.35 L
= initial temperature of gas = 
= final temperature of gas = ?
Now put all the given values in the above equation, we get:


At 318 K of temperature will the same gas take up 4.35 liters of space and have a pressure of 168 kPa