it's 1727 +822 just kidding
Answer:
what is the answers? i cant help you without the answers
Explanation:
Wow ! This is not simple. At first, it looks like there's not enough information, because we don't know the mass of the cars. But I"m pretty sure it turns out that we don't need to know it.
At the top of the first hill, the car's potential energy is
PE = (mass) x (gravity) x (height) .
At the bottom, the car's kinetic energy is
KE = (1/2) (mass) (speed²) .
You said that the car's speed is 70 m/s at the bottom of the hill,
and you also said that 10% of the energy will be lost on the way
down. So now, here comes the big jump. Put a comment under
my answer if you don't see where I got this equation:
KE = 0.9 PE
(1/2) (mass) (70 m/s)² = (0.9) (mass) (gravity) (height)
Divide each side by (mass):
(0.5) (4900 m²/s²) = (0.9) (9.8 m/s²) (height)
(There goes the mass. As long as the whole thing is 90% efficient,
the solution will be the same for any number of cars, loaded with
any number of passengers.)
Divide each side by (0.9):
(0.5/0.9) (4900 m²/s²) = (9.8 m/s²) (height)
Divide each side by (9.8 m/s²):
Height = (5/9)(4900 m²/s²) / (9.8 m/s²)
= (5 x 4900 m²/s²) / (9 x 9.8 m/s²)
= (24,500 / 88.2) (m²/s²) / (m/s²)
= 277-7/9 meters
(about 911 feet)
The original width was 94.71 cm
<span>The area decreased 33.1% </span>
<span>The equation for the final size is </span>
<span>2X^2 = 1.2 m^2 </span>
<span>X^2 - 0.6 m^2 </span>
<span>X^2 = 10000 * .6 cm </span>
<span>X = 77.46 cm (this is the width) </span>
<span>The length is 2 * 77.46 = 154.92 cm </span>
<span>The original length was 154.92 + 34.5 = 189.42 cm </span>
<span>The original width was 189.42 / 2 = 94.71 cm </span>
<span>The original area was 94.71 * 189.92 = 17939.9 cm^2 </span>
<span>The new area is 79.46 * 154.92 = 12000.1 cm^2 </span>
<span>The difference between the original and current area is 17939.9 - 12000.1 = 5939.86 cm^2 </span>
<span>The percentage the area decreased is 5939.86 ' 17939.9 = 33.1%</span>
Answer:
changing from a solid to a gas without changing into a liquid. :)