(a) The distance of the image formed by the concave mirror is 19.1 cm.
(b) The image formed is diminished and real.
<h3>
Image distance </h3>
The distance of the image formed by the concave mirror is calculated as follows;
1/f = 1/v + 1/u
1/v = 1/f - 1/u
1/v = 1/15 - 1/70
1/v = 0.05238
v = 1/0.05238
v = 19.1 cm
The image distance is smaller than object distance, thus the image formed is diminished and real.
Learn more about concave mirror here: brainly.com/question/13164847
#SPJ1
Answer:
A. Vx = 3.63 m/s
B. Vy = -45.73 m/s
C. |V| = 45.87 m/s
D. θ = -85.46°
Explanation:
Given that position, r, is given as:
r = 3.63tˆi − 5.73t^2ˆj + 8.16ˆk
Velocity is the derivative of position, r:
V = dr/dt = 3.63 - 11.46t^j
A. x component of velocity, Vx = 3.63 m/s
B. y component of velocity, Vy = -11.46t
t = 3.99 secs,
Vy = - 11.46 * 3.99 = -45.73 m/s
C. Magnitude of velocity, |V| = √[(-45.73)² + 3.63²]
|V| = √(2091.2329 + 13.1769)
|V| = √(2104.4098)
|V| = 45.87 m/s
D. Angle of the velocity relative to the x axis, θ is given as:
tanθ = Vy/Vx
tanθ = -45.73/3.63
tanθ = -12.6
θ = -85.46°
Direct variation involves ration and proportions, so
you need to set up the proportion:
<span>11 / 75 = x / 65
Cross multiplying:
75x = 11*65
x = (11*65)/75
Solving, we get x = 9.533, </span>
<span>which rounds off to 9.5
Therefore, the spring will stretch up to 9.5 inches with 65 attached.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>