Temperature is a measure of the energy of molecules and energy is related to speed.
<span>The water in a pot is heated by convection. The water on the bottom will warm up and rise toward the surface and the cooler water will then sink to the bottom where it will be heated. </span>
<span>Oxygen will form ionic bonds with nitrogen. The others will not by themselves. </span>
<span>A high pH is indicative of a basic solution. HCl and H2SO4 are both strong acids and will result in a lower (more acidic) pH. Water is the standard. KOH is a strong base and will increase the pH. </span>
<span>An acidic solid will lower the pH of a solution. pH measures the number of hydrogen ions and a lower pH will mean that there are more H+ ions, but the solid could just have reacted with the OH- to cause the pH to decrease</span>
8500 Hz and Longitudinal
Speed = frequency x wavelength
Speed of sound at 20 degrees Celsius is approximately 340 m/s
Answer:
THE BOHR SHIFT ON THE OXYGEN-HEMOGLOBIN DISSOCIATION CURVE IS PRODUCED BY CHANGES IN THE CONCENTRATION OF CARBON IV OXIDE.
Explanation:
The oxygen-hemoglobin dissociation curve shows the relationship between the saturated hemoglobin concentration and oxygen. It shows how the blood hold on to and releases oxygen. The Bohr shift can occur as a result of changes in concentration of carbon iv oxide and other factors such as acidity or pH, 2,3-bisphosphoglycerate, exercise, also temperature of the body. These factors contributes to the right or left shift on the curve. Carbon iv oxide prevents the binding of oxygen to the hemoglobin. The is because hemoglobin has the same binding site for both oxygen and carbon iv oxide. Carbon iv oxide increase also leads to a change in the pH of the blood through the formation of bicarbonate ion. Bicarbonate ion formation causes reduced acidity and therefore lead a shift in the dissociation curve for more of the carbon iv oxide to be excreted as hemoglobin's affinity for oxygen reduces. And when the concentration of carbon iv oxide is low in the plasma, acidity increases and this provides more affinity for oxygen by the hemoglobin.
Answer:
Explanation:
If we assume there is a sharp boundary between the two masses of air, there will be a refraction. The refractive index of each medium will depend on the relative speeds of light.
n = c / v
If light travels faster in warmer air, it will have a lower refractive index
nh < nc
Snell's law of refraction relates angles of incidence and refracted with the indexes of refraction:
n1 * sin(θ1) = n2 * sin(θ2)
sin(θ2) = sin(θ1) * n1/n2
If blue light from the sky passing through the hot air will cross to the cold air, then
n1 = nh
n2 = nc
Then:
n1 < n2
So:
n1/n2 < 1
The refracted light will come into the cold air at angle θ2 wich will be smaller than θ1, so the light is bent upwards, creating the appearance of water in the distance, which is actually a mirror image of the sky.
<h2>
Answer:</h2>
In circuits, the average power is defined as the average of the instantaneous power over one period. The instantaneous power can be found as:

So the average power is:

But:

So:

![P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}(\frac{1+cos(2\omega t)}{2} )dt \\\\P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}[\frac{1}{2}+\frac{cos(2\omega t)}{2}]dt \\\\P=\frac{v_{m}i_{m}}{T}[\frac{1}{2}(t)\right|_0^T +\frac{sin(2\omega t)}{4\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2T}[(t)\right|_0^T +\frac{sin(2\omega t)}{2\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2}](https://tex.z-dn.net/?f=P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5Cintop_%7B0%7D%5E%7BT%7D%28%5Cfrac%7B1%2Bcos%282%5Comega%20t%29%7D%7B2%7D%20%29dt%20%5C%5C%5C%5CP%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5Cintop_%7B0%7D%5E%7BT%7D%5B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7Bcos%282%5Comega%20t%29%7D%7B2%7D%5Ddt%20%5C%5C%5C%5CP%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5B%5Cfrac%7B1%7D%7B2%7D%28t%29%5Cright%7C_0%5ET%20%2B%5Cfrac%7Bsin%282%5Comega%20t%29%7D%7B4%5Comega%7D%20%5Cright%7C_0%5ET%5D%20%5C%5C%20%5C%5C%20P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7B2T%7D%5B%28t%29%5Cright%7C_0%5ET%20%2B%5Cfrac%7Bsin%282%5Comega%20t%29%7D%7B2%5Comega%7D%20%5Cright%7C_0%5ET%5D%20%5C%5C%20%5C%5C%20P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7B2%7D)
In terms of RMS values:
