The answer is average speed
Answer:
a) 33.6 min
b) 13.9 min
c) Intuitively, it takes longer to complete the trip when there is current because, the swimmer spends much more time swimming at the net low speed (0.7 m/s) than the time he spends swimming at higher net speed (1.7 m/s).
Explanation:
The problem deals with relative velocities.
- Call Vr the speed of the river, which is equal to 0.500 m/s
- Call Vs the speed of the student in still water, which is equal to 1.20 m/s
- You know that when the student swims upstream, Vr and Vs are opposed and the net speed will be Vs - Vr
- And when the student swims downstream, Vr adds to Vs and the net speed will be Vs + Vr.
Now, you can state the equations for each section:
- distance = speed × time
- upstream: distance = (Vs - Vr) × t₁ = 1,000 m
- downstream: distance = (Vs + Vr) × t₂ = 1,000 m
Part a). To state the time, you substitute the known values of Vr and Vs and clear for the time in each equation:
- (Vs - Vr) × t₁ = 1,000 m
- (1.20 m/s - 0.500 m/s) t₁ = 1,000 m⇒ t₁ = 1,000 m / 0.70 m/s ≈ 1429 s
- (1.20 m/s + 0.500 m/s) t₂ = 1,000 m ⇒ t₂ = 1,000 m / 1.7 m/s ≈ 588 s
- total time = t₁ + t₂ = 1429s + 588s = 2,017s
- Convert to minutes: 2,0147 s ₓ 1 min / 60s ≈ 33.6 min
Part b) In this part you assume that the complete trip is made at the velocity Vs = 1.20 m/s
- time = distance / speed = 1,000 m / 1.20 m/s ≈ 833 s ≈ 13.9 min
Part c) Intuitively, it takes longer to complete the trip when there is current because the swimmer spends more time swimming at the net speed of 0.7 m/s than the time than he spends swimming at the net speed of 1.7 m/s.
Answer:
Explanation:
When an moving electric charge passes through a uniform magnetic field
its motion becomes circular .
If m be the mass v be the velocity , q be the charge on the mass B be the magnetic field and R be the radius of circular path
force on the moving charge created by magnetic field
= B q v
Centripetal force required for circular motion
= m v² / R
For balancing
B q v = m v² / R
v = B q R / m
Time period of rotation
T = 2π R / v
= 2 π R m / B q R
= 2 π m / B q
For first particle
T₁ = 2 π m₁ / B q₁
For second particle
T₂ = 2 π m₂ / B q₂
q₁ = q₂ and 10 m₁ = m₂ ( given )
Putting the values in second equation
T₂ = 2 π 10 m₁ / B q₁
= 10 x 2 π m₁ / B q₁
= 10 T₁
Given T₁ = T
T₂ = 10 T
A
most common source of phosphates in the soil is the weathering of the mineral apatite.
Explanation:
Apatite is a group of phosphate minerals like hydroxylapatite, fluorapatite, and chlorapatite. When apatite rocks weather, they release the phosphate minerals mainly in the form of PO₄ ³⁻ . These minerals become dissolved in water (hydrosphere), where they are readily available to plants and other organisms in the biosphere. The phosphates are taken up and used in biosynthesis. When these organisms die and become buried with sediments, the phosphate gets back to the lithosphere as sedimentary rock.
Learn More:
For more on phosphorus cycle check out;
brainly.com/question/1796604
brainly.com/question/4160476
#LearnWithBrainly