Answer:
See Explanation
Explanation:
The principle of conservation of energy states that; energy can neither be created nor destroyed but is converted from one form to another.
In view of this principle, Ella can not be correct when she says that a lot of energy has disappeared. The use of the term "disappeared" connotes the idea that the energy no longer exists which does not happen.
Hence, energy can not "disappear" from hot water rather the energy in the water may be transferred to the surroundings.
<h2>Answer: about the same size of the gap or slit</h2>
Diffraction happens when a wave (mechanical or electromagnetic wave, in fact, any wave) meets an obstacle or a slit .When this occurs, the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.
Note that the principal condition for the occurrence of this phenomena is that the obstacle must be comparable in size (similar size) to the size of the wavelength.
In other words, when the gap (or slit) size is larger than the wavelength, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs.
Therefore:
<h2>Waves diffract the most when their wavelength is <u>about the same size of the gap
</u></h2>
<u />
The width of the playroom is 4 m
Answer: True
Explanation: Metamorphism is the changing of rocks by heat and pressure. During this process, rocks change either physically and/or chemically. They change so much that they become an entirely new rock. Figure 4.22: The platy layers in this large outcrop of metamorphic rock show the effects of pressure on rocks during metamorphism.
Answer:
I = 0.451 amp
Explanation:
given,
C = 8.0 µF
V = 2 V
resistor connected between two terminal = 6 Ω
current flowing through resistor = 13 µsec
Q = CV
Q = 8 x 2
Q = 16 µC
for an RC discharge circuit
V = V_0e^{-\dfrac{t}{RC}}
I = \dfrac{-Q_0}{RC}e^{-\dfrac{t}{RC}}
t = 13 µsec
I = \dfrac{-16}{6\times 2}e^{-\dfrac{13}{6\times 2}}
I = 0.451 amp
neglecting -ve sign just to show direction.