Answer:
They gave you the equation; Cp=,
just plug everything in! You’ve seen this; I have long ago, but we had different units. Sorry, but it’s right there! Go get it!
Explanation:
Sb has the largest atomic radius by 206
Answer:
Pressure for H₂ = 11.9 atm
Option 5.
Explanation:
We determine the complete reaction:
2Al(s) + 6HCl(aq) → 2AlCl₃(aq) + 3H₂(g)
As we do not know anything about the HCl, we assume that the limiting reactant is the Al and the acid is the excess reagent.
Ratio is 2:3.
2 moles of Al, can produce 3 moles of hydrogen
Therefore 4.5 moles of Al must produce (4.5 . 3) / 2 = 6.75 moles
Now we can apply the Ideal Gases law to find the H₂'s pressure
P . V = n . R . T → P = (n . R .T) / V
We replace data: (6.75 mol . 0.082L.atm/mol.K . 300K) / 14L
Pressure for H₂ = 11.9 atm
Answer:
1.0 mole
Explanation:
From the question given above, the following data were obtained:
Volume (V) = 5 L
Temperature (T) = 205 K
Pressure (P) = 340 KPa
Gas constant (R) = 8.31 KPa.L/Kmol
Number of mole (n) =?
Using the ideal gas equation, the number of mole of the gas in the container can be obtained as follow:
PV = nRT
340 × 5 = n × 8.31 × 205
1700 = n × 1703.55
Divide both side by 1703.55
n = 1700 / 1703.55
n = 1.0 mole
Thus, the number of mole of the gas in the container is 1.0 mole