(a) This is a freefall problem in disguise - when the ball returns to its original position, it will be going at the same speed but in the opposite direction. So the ball's final velocity is the negative of its initial velocity.
Recall that

We have
, so that

(b) The speed of the ball at the start and at the end of the roll are the same 8 m/s, so the average speed is also 8 m/s.
(c) The ball's average velocity is 0. Average velocity is given by
, and we know that
.
(d) The position of the ball
at time
is given by

Take the starting position to be the origin,
. Then after 6 seconds,

so the ball is 42 m away from where it started.
We're not asked to say in which direction it's moving at this point, but just out of curiosity we can determine that too:

Since the velocity is positive, the ball is still moving up the incline.
The velocity of the package after it has fallen for 3.0 s is 29.4 m/s
From the question,
A small package is dropped from the Golden Gate Bridge.
This means the initial velocity of the package is 0 m/s.
We are to calculate the velocity of the package after it has fallen for 3.0 s.
From one of the equations of kinematics for objects falling freely,
We have that,
v = u + gt
Where
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
and t is time
To calculate the velocity of the package after it has fallen for 3.0 s
That means, we will determine the value of v, at time t = 3.0 s
The parameters are
u = 0 m/s
g = 9.8 m/s²
t = 3.0 s
Putting these values into the equation
v = u + gt
We get
v = 0 + (9.8×3.0)
v = 0 + 29.4
v = 29.4 m/s
Hence, the velocity of the package after it has fallen for 3.0 s is 29.4 m/s
Learn more here: brainly.com/question/13327816